班主任工作总结

高中哲学知识点总结9篇

2023-06-15 10:22:04

  高中哲学知识点总结9篇

高中哲学知识点总结9篇

高中哲学知识点总结第1篇

  一、钠单质

  1、Na与水反应的离子方程式:命题角度为是否违反电荷守恒定律。

  2、Na的保存:放于煤油中而不能放于水中,也不能放于汽油中;实验完毕后,要放回原瓶,不要放到指定的容器内。

  3、Na失火的处理:不能用水灭火,必须用干燥的沙土灭火。

  4、Na的焰色反应:颜色为黄色,易作为推断题的推破口。注意做钾的焰色反应实验时,要透过蓝色的钴玻璃,避免钠黄光的干扰。

  5、Na与熔融氯化钾反应的原理:因钾的沸点比钠低,钾蒸气从体系中脱离出来,导致平衡能向正反应移动。【Na+KCl(熔融)=NaCl+K】

  二、氢氧化钠

  1、俗名:火碱、烧碱、苛性钠

  2、溶解时放热:涉及到实验室制取氨气时,将浓氨水滴加到氢氧化钠固体上,其反应原理为:一是NaOH溶解放出大量的热,促进了氨水的分解,二是提供的大量的OH—,使平衡朝着生成NH3的方向移动。与之相似的还有:将浓氨水或铵盐滴加到生石灰上。涉及到的方程式为NH4++OH— NH3?H2O NH3↑H2O。

  3、与CO2的反应:主要是离子方程式的书写(CO2少量和过量时,产物不同)。

  4、潮解:与之相同的还有CaCl2、MgCl2、

  三、过氧化钠

  1、非碱性氧化物:金属氧化物不一定是碱性氧化物,因其与酸反应除了生成盐和水外,还有氧气生成,化学方程式为:2Na2O2+4HCl=4NaCl+2H2O+O2↑。

  2、过氧化钠中微粒的组成:1mol过氧化钠中所含有离子的数目为3NA,或说它们的微粒个数之比为2:1,命题角度为阿伏加德罗常数。

  3、过氧化钠与水、CO2的反应:一是过氧化钠既是氧化剂也是还原剂,水既不是氧化剂也不是还原剂;二是考查电子转移的数目(以氧气的量为依据)。

  4、强氧化性:加入过氧化钠后溶液离子共存的问题;过氧化钠与SO2反应产物实验探究。

高中哲学知识点总结第2篇

  1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。

  (2)烫伤宜找医生处理。

  (3)浓酸撒在实验台上,先用Na2CO3 (或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。

  (4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。

  (5)钠、磷等失火宜用沙土扑盖。

  (6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。

高中哲学知识点总结第3篇

  一、硅元素:无机非金属材料中的主角,在地壳中含量26.3%,次于氧。是一种亲氧元

  素,以熔点很高的氧化物及硅酸盐形式存在于岩石、沙子和土壤中,占地壳质量90%以上。位于第3周期,第ⅣA族碳的下方。

  Si对比C

  最外层有4个电子,主要形成四价的化合物。

  二、二氧化硅(SiO2)

  天然存在的二氧化硅称为硅石,包括结晶形和无定形。石英是常见的结晶形二氧化硅,其中无色透明的就是水晶,具有彩色环带状或层状的是玛瑙。二氧化硅晶体为立体网状结构,基本单元是[SiO4],因此有良好的物理和化学性质被广泛应用。(玛瑙饰物,石英坩埚,光导纤维)

  物理:熔点高、硬度大、不溶于水、洁净的SiO2无色透光性好

  化学:化学稳定性好、除HF外一般不与其他酸反应,可以与强碱(NaOH)反应,是酸性氧化物,在一定的条件下能与碱性氧化物反应

  SiO2+4HF == SiF4 ↑+2H2O

  SiO2+CaO ===(高温) CaSiO3

  SiO2+2NaOH == Na2SiO3+H2O

  不能用玻璃瓶装HF,装碱性溶液的试剂瓶应用木塞或胶塞。

  三、硅酸(H2SiO3)

  酸性很弱(弱于碳酸)溶解度很小,由于SiO2不溶于水,硅酸应用可溶性硅酸盐和其他酸性比硅酸强的酸反应制得。

  Na2SiO3+2HCl == H2SiO3↓+2NaCl

  硅胶多孔疏松,可作干燥剂,催化剂的载体。

  四、硅酸盐

  硅酸盐是由硅、氧、金属元素组成的化合物的总称,分布广,结构复杂化学性质稳定。一般不溶于水。(Na2SiO3 、K2SiO3除外)最典型的代表是硅酸钠Na2SiO3:可溶,其水溶液称作水玻璃和泡花碱,可作肥皂填料、木材防火剂和黏胶剂。常用硅酸盐产品:玻璃、陶瓷、水泥

  五、硅单质

  与碳相似,有晶体和无定形两种。晶体硅结构类似于金刚石,有金属光泽的灰黑色固体,熔点高(1410℃),硬度大,较脆,常温下化学性质不活泼。是良好的半导体,应用:半导体晶体管及芯片、光电池、

  六、氯气

  物理性质:黄绿色气体,有刺激性气味、可溶于水、加压和降温条件下可变为液态(液氯)和固态。

  制法:MnO2+4HCl (浓) MnCl2+2H2O+Cl2

  闻法:用手在瓶口轻轻扇动,使少量氯气进入鼻孔。

  化学性质:很活泼,有毒,有氧化性,能与大多数金属化合生成金属氯化物(盐)。也能与非金属反应:

  2Na+Cl2 ===(点燃) 2NaCl 2Fe+3Cl2===(点燃) 2FeCl3 Cu+Cl2===(点燃) CuCl2

  Cl2+H2 ===(点燃) 2HCl现象:发出苍白色火焰,生成大量白雾。

  燃烧不一定有氧气参加,物质并不是只有在氧气中才可以燃烧。燃烧的本质是剧烈的氧化还原反应,所有发光放热的剧烈化学反应都称为燃烧。

  Cl2的用途:

  ①自来水杀菌消毒Cl2+H2O == HCl+HClO 2HClO ===(光照) 2HCl+O2 ↑

  1体积的水溶解2体积的氯气形成的溶液为氯水,为浅黄绿色。其中次氯酸HClO有强氧化性和漂泊性,起主要的'消毒漂白作用。次氯酸有弱酸性,不稳定,光照或加热分解,因此久置氯水会失效。

  ②制漂白液、漂白粉和漂粉精

  制漂白液Cl2+2NaOH=NaCl+NaClO+H2O,其有效成分NaClO比HClO稳定多,可长期存放制漂白粉(有效氯35%)和漂粉精(充分反应有效氯70%) 2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O

  ③与有机物反应,是重要的化学工业物质。

  ④用于提纯Si、Ge、Ti等半导体和钛

  ⑤有机化工:合成塑料、橡胶、人造纤维、农药、染料和药品

高中哲学知识点总结第4篇

  (1)不等关系

  感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

  (2)一元二次不等式

  ①经历从实际情境中抽象出一元二次不等式模型的过程。

  ②通过函数图象了解一元二次不等式与相应函数、方程的联系。

  ③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

  (3)二元一次不等式组与简单线性规划问题

  ①从实际情境中抽象出二元一次不等式组。

  ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

  ③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

  (4)基本不等式

  ①探索并了解基本不等式的证明过程。

  ②会用基本不等式解决简单的(小)值问题。

高中哲学知识点总结第5篇

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1)元素的确定性;

  2)元素的互异性;

  3)元素的无序性。

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

  1)用拉丁字母表示集合:A={我校的`篮球队员}B={12345}。

  2)集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分类:

  1)有限集含有有限个元素的集合。

  2)无限集含有无限个元素的集合。

  3)空集不含任何元素的集合例:{x|x2=—5}。

  二、集合间的基本关系

  1、“包含”关系子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。

  2、“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—11}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。

  ①任何一个集合是它本身的子集。AA

  ②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果ABBC那么AC

  ④如果AB同时BA那么A=B

  3、不含任何元素的集合叫做空集,记为Φ。

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的运算

  1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。

  3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  记作:CSA即CSA={x?x?S且x?A}。

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高中哲学知识点总结第6篇

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.

  3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

  .集合的表示方法:列举法与描述法。

  常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R

  5.关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表

  示某些对象是否属于这个集合的方法。6、集合的分类:

  (1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合

  (3).空集不含任何元素的集合例:{x|x2=-5}=Φ

  二、集合间的基本关系

  1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

  2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。即A?A

  ②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)

  ③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

  (3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念

  合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.

  2.构成函数的三要素:定义域、对应关系和值域

  再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

  3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

  给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

  说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

  5.常用的函数表示法:解析法:图象法:列表法:

  6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;

  (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1

  注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

  (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

  (A)定义法:○1任取x1,x2∈D,且x1

  8.函数的奇偶性

  (1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

  2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○

  则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

  补充不等式的解法与二次函数(方程)的性质

高中哲学知识点总结第7篇

  集合的分类:

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N。

  在自然数集内排除0的集合叫做正整数集,记作N+或N_。

  整数全体构成的集合,叫做整数集,记作Z。

  有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的'点一一对应的数。)

  1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。

  2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2—1=0}的特征是X2—1=0

高中哲学知识点总结第8篇

  有界性

  设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界.

  单调性

  设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的.单调递增和单调递减的函数统称为单调函数.

  奇偶性

  设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数.

  几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变.

  奇函数的例子有x、sin(x)、sinh(x)和erf(x).

  设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数.

  几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.

  偶函数的例子有|x|、x2、cos(x)和cosh(x).

  偶函数不可能是个双射映射.

  连续性

  在数学中,连续是函数的一种属性.直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数.如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性).

高中哲学知识点总结第9篇

  1.定义法:

  判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可.

  2.转换法:

  当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断.

  3.集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A∩B,则p是q的充分条件.

  若A∪B,则p是q的必要条件.

  若A=B,则p是q的充要条件.

  若A∈B,且B∈A,则p是q的既不充分也不必要条件.

相关文章

推荐文章