教案

能被3整除的数小学四年级数学教案一等奖

2023-06-16 17:27:08

  能被3整除的数小学四年级数学教案一等奖

能被3整除的数小学四年级数学教案一等奖

1、能被3整除的数小学四年级数学教案一等奖

  教学目标

  1、知识目标:掌握能被3整除的数的特征。

  2、技能目标:能运用被3整除的数的特征判断一个数能否被3整除。

  3、情感目标:培养学生自主探索的能力,合作学习的品质,让学生感受生活中蕴藏着丰富的数学知识。

  教学过程:

  一、引入的开放(创设情景)

  1、游戏入手,请学生说出几个任意多位数,老师不用计算就能很快地说出它是否能被3整除。

  2、师生共同验证老师的判断,认为无误后,学生尝试。

  3、思考:老师是用什么方法这么快就断定一个数能否被3整除的?

  设计意图:采用游戏的形式,引入猜数活动,创设教学情景。使学生带着欢快、带着激情,在和谐、宽松、活跃的开放氛围中,立刻引起好奇性,他们会主动地向老师提出问题:您是用什么方法这么快就能断定一个数能否被3整除的?以致激发了学生强烈的学习情感,使学生兴趣盎然地投入到对知识的探索之中。

  二、展开的开放

  1、探求知识

  ①请学生说出能被2、5整除的数的特征,然后让学生大胆猜想:你认为能被3整除的数的特征与个位上的数字有关吗?

  (学生各自发表自己的观点)

  ②让学生说出一些能被3整除的两位数:(按照学生的口答板书)

  12、15、18、21、24、27、30、33、36、39、42

  议:这些数的个位上数字有特征吗?

  (个位上的数字是0、1、2、3每个数字都有)

  思考:能被3整除的数的特征,从一个数的个位上的数字来考虑,有可能吗?

  ③任意写出一个能被3整除的数,如:162

  让学生变换数字的位置,问:你发现了什么?

  再把黑板上所列的两位数也调换一下数字,想一想,能不能被3整除?

  (被3整除的数,交换数字的排列顺序,仍然能被3整除。)

  2、形成共识

  ①引导:能被3整除的数,与各个数位上数字的和、差、积、商有否关系?

  ②分组交流,发表观点:

  (初步认识能被3整除的数的特征与一个数的各位上数字的和有关)

  ③用上面的方法判断下面的数能不能被3整除。

  54 372 454 837

  (判断后,通过演算验证)

  ④学生看书释疑

  议:书上用什么方法推导的?怎样记忆能被3整除的数的特征?

  设计意图:因势利导,开放了教学思路,充分重视教师导的作用和学生学的体验。这一阶段以自主探索、合作交流为学生主要的学习方式,让学生通过猜想--验证的探索过程来发现知识,获得结论,并感悟方法,安排了以下三个层次的.教学活动:1、通过学生猜想、举例尝试,使学生产生两次认知冲突;接着通过交换数字的位置,使学生有模糊的认识,但仍然没能发现特征 ,产生第三次认知冲突。2、通过计算各数位上的数的和、差、积、商,使结论逐渐显露。3、通过交流,教师点拔,学生自我释疑,形成能被3整除的数的特征 。

  三、应用的开放:

  1、应用知识:(学生独立完成)

  ①下面哪些数能被3整除,为什么?

  45 51 111 201 437

  ②写出几个能被3整除的多位数

  2、开放提升:

  ①在下面每个数中的□里填上一个数字,使这个数有约数3。

  23□5 127□ 3□6□ 5□□0

  ②你能写出几个能同时被2、5、3整除的数吗?想一想,有何特征?

  ③你能去找到能被7、11、13、4、9等数整除的特征吗?

  设计意图:练习是对知识的巩固与延伸,直接关系到学生对知识的理解,这一阶段安排了两个层次:

  1、主要是为了关注学困生,要求学生运用所学知识,方法及已掌握的规律,解决实际问题,达到巩固知识,形成技能的目的。

  2、设计了一些开放性的题目,让学生根据自己的知识水平去完成,特别在互相启发下,使学生思维敏捷,思路开阔,增强了学生学好数学的信心,解决问题的意识和能力得到了明显的提高。

2、能被3整除的数小学四年级数学教案一等奖

  教学目标

  (1)使学生掌握能被3整除的数的特征、并能正确判断一个数能否被3整除。

  (2)培养学生观察、分析、探求规律的能力。

  教学重点、难点

  重点:掌握能被3整除的数的特征是重点。

  难点:判断一个数能否被3整除是难点。

  教具、学具准备

  教学过程

  备注

  一、复习引入,揭示课题

  1、请学生分别说出一个与生活密切相关的数,如电话号码、牌照号码、人数、钱数等。教师选择其中几个板书,如:7234698、6403105、3210、734、5816、72等。

  2、说说这些数中哪些能被2整除,哪些能被5整除。

  学生回答后再问:你是怎么判断的?(根据个位上的数字判断)

  3、问:如果要判断一个数能不能被3整除,请说说你自己的想法。

  (如果学生提出看个位上的数,就马上组织讨论。如果学生不提出这个观点,教师可在适当的时机提出:判断一个数能否被3整除,是不是也只要看它个位上的数就行了?再让学生在小组中展开讨论。)

  小组讨论要求:

  (1)小组中每个同学自己报几个能被3整除的数,供大家观察讨论。

  (2)仔细观察,探求规律。

  (3)各抒已见,敢于提出与别人不同的意见或补充自己的想法。

  4、全班学生交流,最后得出结论:判断一个数能否被3整除不能看个位上的数。

  5、揭题:今天我们一起来研究“能被3整除的数的特征”。(板书:能被3整除的数的特征)

  二、动手实验,探索规律。

  1、分类。

  (1)请学生先在卡片“()4”中一个数字,使其成为两位数,再将这些数按能否被3整除进行分类。

  能被3整除的数不能被3整除的数

  235484143444647494

  (2)分小组验证学生分类是否正确。

  2、实验。

  (1)实验(1)

  A、将上面各数各个数位上的数字交换位置,得到一个新的数。

  教学过程

  备注

  424548414344464749

  B、通过观察计算,你发现了什么?请用自己的话说一说。(同桌交流)

  (能被3整除的数,交换数位上的数字的位置,得到的数也能被3整除;不能被3整除的数,交换数位上的数字的位置,得到的数也不能被3整除。)

  C、思考:一个数能否被3整除,跟数字所在的位置有没有关系呢?(没有)那和什么有关系呢?

  (2)实验(2)

  A、将组成各组数的几个数字分别相加,看看会发现什么?

  2+4=64+5=912578101113

  B、学生计算后交流自己的发现。

  (能被3整除的数,它们各个数位上的数字的和也能被3整除;不能被3整除的数,它们各个数位上的数字的和也不能被3整除。)

  思考:一个数各个数位上的数字的和能被3整除,这个数就能被3整除吗?(初步得出结论,并引导学生进一步验证)

  3、验证。

  (1)请同学们拿出准备好的3根小棒摆数,一根小棒在个位表示一个1,摆在十位表示一个10,请你任意摆出一个两位数(如12、21、30),再摆出一个任意的三位数(如111、120、102、201、300),观擦一下,你发现摆出的'数有什么特点?

  先请同学用一句话概括自己的发现(用3根小棒摆的任意两位数、三位数都能被3整除),再讨论3是这些数的什么?(实际上是这些数各位数字的和)那刚才的那句话也可以怎么说?(得出:只要一个数各数位上数字的和是3。这个书就能被3整除)

  (2)游戏:用6根小棒或9根小棒在一分钟内摆出几个山三位数(同桌合作,边摆边作好记录),观察记录下的数据,你们发现了什么?(用6根小棒摆出的任意三位数都能被3整除)那么两位数呢?四位书呢?为什么?(得出:只要一个数各数位上数字的和是6或9,这个数就能被3整除)

  4、总结:请同学们根据前面的实验和游戏,用自己的话说一说怎样来判断一个数能否被3整除,再对照课本加深记忆。

  三、应用规律,巩固知识

  1、基本练习。

  (1)判断,下面哪些数能被3整除。(课本上练一练第1题)

  45517890111201

  学生先独立判断,再交流是怎样判断的。

  (2)同桌间互说三个能被3整除的数。

  2、发展练习。

  (1)在下面每个数中的“()”里填上一个数字,使这个数有约数3。“()”里有几种填法?(课本上练一练第2题)

  23()51()27346()58()0

  教学过程

  备注

  (2)你能迅速判断出下面的数能否被3整除吗?

  396399817263312874219

  引导学生用简便方法,即先把数字3、6、9划掉,再把凑成是3的倍数的数字划掉,最后把剩下的各位数加起来看能否被3整除。

  (3)课本上练一练第4题。

  四、课堂小结

  1、你学会了哪些知识?你是用什么方法学会的?你还想研究什么?

  2、你有什么疑问?谁能帮他解决?

  五、作业《作业本》

  课后反思:

  “问题情境”必须贴近儿童的生活现实,这节课我设计这么情境今天,老师想请同学们做一回小老师,由你们任意选一个自然数,考考老师:它能被2或3或5整除吗?看看哪位同学能考倒老师。学生无论举出什么数都难不倒老师,心里头觉得老师太了不起、太神奇了。看到学生的兴趣被激起来了,这时老师一语道破:同学们,不是老师有什么特异功能,而是掌握了有关数学的规律,这节课我们一起来探索这个规律,好不好?让学生也来当一回小老师,这事很新鲜。本案例的“新”就充分体现在这里。正是这幕别出心裁的“考老师”情境,吊起了学生的胃口,激起了学生急于想探索数学规律的强烈欲望。

3、能被3整除的数小学四年级数学教案一等奖

  教学目标

  使学生进一步掌握能被2、5、3整除的数的特征,并能综合运用。

  教学重点、难点

  重点:能综合运用能被2、5、3整除的数的特征知识。

  难点:

  教具、学具准备

  一、基本练习

  1、口答:能被2整除的数有什么特征?能被5整除的数有什么特征?怎么样的数能被3整除?

  2、出示第1题。

  (1)学生做在р39上,并指名板演。

  (2)反馈:说一说,你是怎么判断的?

  (3)这些数中,哪些是2的倍数?哪些数有约数2?为什么?

  (4)口答:“55、70、135、1110”都能被5整除,又可以说(),还可以说()。

  3、出示:

  (1)下面各数哪些是2的倍数?哪些是5的倍数?哪些是3的倍数?

  367580135180204

  A、“哪些数是2的.倍数?”这个问题,也就是问什么?(哪些数能被2整除)

  B、学生练习后反馈,说一说,你是怎样判断的?

  (2)下面哪些数有约数2?哪些数有约数5?哪些书有约数3?

  549624060510954050

  4、学生练习本第3题,练后反馈纠正。

  二、综合练习

  1、出示书р40的第4题。

  (1)审题:“排成的三位数要求有约数2和5”这怎样理解?“排成的三位数要求是3和5的倍数?”是什么意思?

  (2)学生练习后逐题反馈,问:说一说,你是怎样想的?

  讨论:下列数必定有什么特征?能同时被2、5整除的数?能同时被2、3整除的数。能同时3、5整除的数。能同时被2、5、3整除的数。

  三、探索练习

  1、学生默看书上的思考题。

  2、学生口答,教师板书填空:

  能被4整除的有:()()()

  ()()()

  ()()()

  能被25整除的有:()()()

  ()()()

  3、教师引导:“能被2、5整除的数的特征是看个位上;”能被3整除的数的特征“是看各个数位的数的和。现在要认识能被4或25整除的数的特征,能不能从个位上出现?能不能从各位上数的和中去发现?那么怎样去找被4、25整除的数的特征呢?(还可以把三位数、四位数改写成整百数加两位数的形式后,引导学生观察、思考。同桌讨论。)

  4、归纳:一个数的末两位数能被4整除,这个数就能被4整除。末两位是00、25、50、75的数,就能被25整除。

  四、教学总结

  今天,我们运用”能被2、3、5整除数的特征,进行了各种形式的练习;而且还自己动脑筋,发现了“能被4、25整除数的特征。”

  五、作业《作业本》

  课后反思:

  引导学生面对问题,学会探究、学会思考,突破思维的定势,不受条条框框地约束,不迷信书本和权威。本节课。练习课不是让教师讲却引导学生实践。在解决问题的过程中,教师通过多种方法培养学生开拓创新,使学生从被动学习转变为主动学习,从被动接受变为主动探索,从而达到鼓励、培养创新思维的目的。只有当学生经过自己的思考找到解决问题的措施,他才能面对问题畅所欲言,发表自己的见解。也只有这样的学生才能真正参与课堂的学习。

4、能被3整除的数小学四年级数学教案一等奖

  一、创设情境激发兴趣

  1、下列哪些数能被2或5整除?

  34、125、300、41、16

  2、下列哪些数能被3整除?

  34、83、65、120、321

  3、考老师,学生报数,教师判断能不能被3整除,学生验证。

  4、导入新课。

  二、探究规律概括特征

  师:前面我们发现了能被2、5整除的数的特征,请你猜测一下能被3整除的数会有什么特征。(学生猜测,教师举例学生验证,引发认知冲突。)感知能否被3整除与数的个位无关。

  那么,能被3整除的数的特征到底是怎样的?你想怎样去探究?(有前一课的基础,估计大都数会选用百数表)

  (1)学生操作:

  在百数表中圈出能被3整除的数。也可以使用集合圈(如课本)。

  123456789

  10111213141516171819

  20212223242526272829

  30313233343536373839

  40414243444546474849

  5051525354......

  (2)寻找规律:

  师:你有没有发现能被3整除的数有什么规律?可以小组讨论讨论。

  (3)交流总结:

  师:同桌之间或前后组成四人小组,互相把自己发现的.规律说一说。并讨论一下能被3整除的数到底会有什么特征?

  集体交流

  当学生发现能被3整除的数斜着排成一列,就接着引导学生进一步深入观察,发现一列中的每个数各位上的数的和相同,这个和都能被3整除。

  概括出能被3整除的数的特征。(板书:一个数各位上的数的和能被3整除的数,这个数就能被3整除。)

  在自主操作的基础上,让学生先发现能被3整除的数的排列模型,再通过深入观察,并辅以讨论、交流,去自主发现能被3整除的数的特征,经历“再创造”数学的过程,体验发现的乐趣。

  (4)教师讲解:

  所以判断一个数能否被3整除,只要看它的各位上的数的和能不能被3整除。

  (5)练习巩固:

  ①、阅读课本。

  ②完成第47页练一练。学生独立判断,教师巡视,个别辅导;全班口答交流。

  通过阅读和练习,整理学生的思维,巩固所学的知识;第二题的设计充分考虑了学生的个性差异,做到分层施教。

  三、巩固练习:

  1、练习八5(下面哪些数能被3整除?)

  2、练习八6各有几种填法?

  3、下面哪些数有约数2,哪些数有约数3?(找出其中6的倍数,看看有什么发现?)

  26、48、65、267、432、753、2140

  4、你想用今天的知识写一些数吗?

  四、课堂总结:

  今天我们探讨什么问题,你有哪些收获?

  五、课堂作业:

  1、练习八7

  2、借助百数表自主探究能被4、9、等数整除的数的特征或排列模型。

  “能被2、5、3整除的数”是第十册教材中的一个非常重要的内容,学得如何,直接影响学生的后续学习。而其中能被3整除的数的特征比较隐蔽,原教材中是以验证性操作为主。为了突破难点,提高教学效率,落实新课程理念,切实转变学生的学习方式,促进学生全面和谐的发展,所以在教学设计注意了以下几个方面:

  1、通过创设情境,组织引导,促进学生形成一种主动参与,自主探究的学习方式。

  2、注重学生数学交流的能力的培养。

  3、注意数学思想方法的渗透,在探究的过程中渗透数学模型思想,并以此来强化表象,促进概念的形成。

5、能被3整除的数小学四年级数学教案一等奖

  教学内容:苏教版三年级上册第9-10页。

  教学目标:

  1、学习一位数除两位数的除法笔算方法;

  2、指导学生观察、思考计算方法;

  教学重点:个位商写0的.计算、理解不够商1要用0占位。

  教学难点:被除数十位上数能整除而个位上的数不够商1时,为什么要写0?

  教师准备:挂图、幻灯片、铅笔(70支)

  教学过程:

  一、新课导入:

  今天,老师要把62支铅笔平均分给3个班,每个班能分到多少个?

  二、新课学习:

  1、让我们写出算式来。(剩下2个羽毛球,商怎样写呢?)

  62÷3=20(个)......2(个)

  20

  3√62

  6

  ――

  2

  2、让我们来验算一下。

  3、边想边做:83÷4=63÷6=92÷3=61÷2=(注意个别学生进行指导)

  4、算一算,比一比:

  42÷2=41÷2=63÷5=53÷5=

  5、找找错在哪?(想想做做第3题)

  6、想想做做第5题注意启发学生提出问题可以灵活点。

  7、至少要搭多少顶帐篷?(让学生体会余数问题在生活中的合理运用,不要求讲进一法)讨论完成想想做做第6题。

  三、巩固练习:完成练习第二页想想做做1、2。

  四、小结:大家今天有什么收获啊?

  五、布置作业:

  1、用竖式计算,并验算最后两题。

  52÷5=43÷4=82÷4=74÷7=

  2、有75千克的大米,每次搬运10千克,至少要搬运多少次?

  六、教学后记:

6、五年级数学《能被2、3整除的数》教学反思

  先从旧知识的连接点,为2、5、3整除的数算理打好知识基础。再通过举例观察、思考、研究能被2整除的数的特征,并研究其算理。在研究能被2整除的数的基础上来研究能被5整除的数,放手让学生说。发现10、2、5之间的关系,迁移到100、25、4;1000、125、8……,掌握一类发现数的特征的方法。最后,分析不能通过个位上的数字来判断一个整数能不能被3整整出的原因,深化算理的理解。给学生足够的时间和过程去感悟能被3整除的数的特征。最后解释这种方法的根源——10除以3余1,100除以3余1,1000、10000这样的数除以3都余1。为迁移提供基础。

  (1)抓住知识结构。

  整除是在整数除法的基础上发展而来,整数a除以整数b(b不等于0),除得的商是整数而没有余数,我们就说a能被b整除。整除的问题就可以归结为余数问题,并且正处的很多性质都可以用除法与减法的关系来解释。根据能被10整除的数的特征,只看个位。2和5是10的约数,十位和十位以前的数都表示几个十,这些数除以2或5都没有余数,所以就不用去考虑了,只考虑个位上的数能不能被2或5整除。还发现因为10=2×5,所以判断一个整数能不能被2和5整除的方法与判断一个整数能不能被10整除的方法相同。由此可以迁移到100=25×4,所以判断一个整数能不能被4和25整除的方法与判断一个整数能不能被100整除的方法相同都是看后两位。同样由1000=125×8可以想到能被125和8整除的数的特征。根据10÷3=3……1、100÷3=33……1、1000÷3=333……1;……所以,几个十除以3就与几个一,也就是十位上的数字;几个百除以3就余继各异,也就是百位上的数字。……,所以可以通过把各个数位上数字相加的和能不能被3整除来判断这个数能不能被3整除。同样,10÷9=1……1、100÷9=11……1、1000÷9=111……1、……可以得出能被9整除的数的特征。同样还可以发现能被99、33、11、999、111、333……整除的数的特征。

  知识结构的形成,使学生能够抓住知识间的`内在联系,抓住知识结构中的核心概念,这样就能举一反三,触类旁通,这个过程也就是培养学生的创新能力的过程。另外,通过知识的整理,使学生掌握整理知识的方法,使学生善于发现事物间的关系(这往往是创新的基础),最终通过图表等形式表达出来。这样形象思维和逻辑思维相结合,培养了学生的创新能力。

  (2)抓知识的本质,掌握研究问题的方法。

  数学课学习的是分析、解决问题的方法和思路。本节课注重探究知识的根源研究,弄清现象后的本质,不但总结了判断一个整数能不能被2、5、3整除的数的方法。掌握总结数的特征的方法,用10、100、1000这样的数除以要研究的数,看余数有没有规律,如果有规律,如果有规律在进行具体研究,总结规律。因此,研究知识时,要深入探究,了解知识的本质,做到“知其然还知其所以然”。掌握研究问题的方法。

7、小学数学四年级上册《除数是两位数的除法》教学反思

  第一:大胆、灵活、创造性地使用教材。

  在这节课中,由于自己过于“一板一眼”地使用教材,致使学生有好的试商、调商的方法,而没有及时地让学生展示、总结。从这一节课的教学中,使我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,可以在某些内容上进行适当的增、改。在本节课的'教学中,可以将例7、例8的教学放在一节课上进行,让学生尝试,经过探究,总结出几种试商的方法。这样再经过练习巩固几种方法,掌握方法,在巩固中选择最优的方法。

  第二:为学生的发展创造环境,搭建展示自我的平台。

  学生的发展很大程度上取决于教师,教师给多大空间,学生的发展空间可能就有多大。因此,课堂上教师应该为学生多创造一些有利于学生发展、有利于学生展示自我个性、有利于学生交流的环境。让他们在这样的环境中、舞台上尽情展示自我,吸取他人的精华,获取知识。例如在本节课的教学中,完全可以创设让学生自己探究的环境,通过生生交流、教师的引导让学生自己总结出几种试商的方法,参与新知识形成的全过程。学生获得的知识通过自己的探究得到的,而不是教师“教”出来的,这样的知识又怎么能轻易忘记呢?所以课堂上为学生创设一个良好的学习环境是多么重要。在以后的教学中自己要深钻研,勤动脑,为学生更好的服务。

8、小学四年级数学上册《除数是两位数的除法整理和复习》教学

  整理复习的过程,就是学生梳理相关知识、形成自己数学认知结构的过程,这个过程是一个主动探索、自主建构的过程。因此本节课重在学生的主动参与,有效措施引导学生积极地投入到整理和复习的过程中。

  1、创设情景,解决实际问题

  创设贴近生活、学生感兴趣的问题情境,使学生以积极、良好的状态投入到数学学习活动之中。学生在解决问题中全面激活所要整理的知识内容,为后面整理知识、建构网络做好了铺垫。

  2、回顾梳理,构建知识网络

  给予学生独立思考、充分展示的空间,鼓励学生根据自己的认知水平和学习方式对已激活的知识进行重组,形成自己的'认知结构。学生在此过程中,提高了数学学习能力,获得了成功的体验。

  3、综合练习,灵活应用知识

  充分利用教材资源,引导学生将知识广泛应用于新的问题情境中。通过基础练习、辨析练习和解决问题,进一步发展学生的数学能力,感受应用数学的乐趣。

9、小学四年级数学上册《除数是两位数除法整理和复习》的教学反思

  本节课我在确定教学目标时注重整体性。回忆算理算法,熟练技能;沟通知识间的内在联系,重新建构知识网络;通过问题解决,训练学生多向思维,培养学生合作意识和情感价值观。把学生的终身可持续发展作为数学教育的根本目的。

  “加强口算、淡定笔算、重视估算、注重算法多样化”这是计算教改的方向。课标指出“应让学生在具体运算和解决简单实际问题的过程中体会乘与除的互逆关系。”因此本课在设计过程中没有把笔算的方法、技能作为复习的重点,而是让学生“体会、运用”乘除法的关系作为一项重要的教学目标贯穿在全课之中。通过小红、小亮、小明不同的计算结果的批改及根据小亮的正确算式1998÷54=37口算1999÷54=()……()等,让学生自觉运用乘除法之间的关系进行估算、验算、灵活解决实际问题,这样不仅使学生的计算能力有了较大的提高,而且学生思维的灵活性、创造性得到了良好培养。

  数学思想方法是指在认识或处理各种数学或者非数学现象的思维过程中,所表现出来的种种数学观念及思维方式。在课堂教学中渗透数学思想方法的教学,使学生掌握基本数学思想和方法不仅使学科学习变得容易,而且对于学生将来从事的工作,随时随地发生作用,使他们受益终生。在本堂课的.教学设计中,有机渗透了分类思想(把8个算式按不同的标准进行分类),函数思想(除数不变的情况下如何判断商的大小),极限思想(有没有最大、最小值,如有分别是多少)估计思想(谁的计算结果是正确的,哪一个商最大等)等。通过对各种数学思想方法的渗透教学,使学生真正学会数学的思考。如借助分类思想,使学生很好地把试商方法、估商方法、计算方法、乘除互逆关系有机地整合起来。

  数学源于生活,应用于生活。我在课堂上努力使学生身临其境,体验生活、感悟数学。

相关文章

推荐文章