五年级数学多边形的面积计算教案一等奖
1、五年级数学多边形的面积计算教案一等奖
【学法指要】
1.有一块三角形菜地,底为160米,它比高的2倍少20米。菜地面积是多少平方米?
思路分析:此题是求三角形面积的题目。求三角形的面积的关键是知道三角形的底和高。题目中底已经直接给出,而高没有直接给出。因此这题要想求出面积,必须先求出高。求高是求1倍量的,应先把160米补上20米后,正好对应2倍。因此高这样计算:(160+20)÷2=180÷2=90(米)。
再求三角形菜地的面积,直接应用公式计算就可以了。
解: (160+20)÷2
=180÷2
=90(米)
160×90÷2
=14400÷2
=7200(平方米)
答:菜地的面积是7200平方米。
2.有一块梯形田,上底6米,比下底的一半少0.4米,高比上底多2米,求梯形田的面积是多少平方米?
思路分析:这题的题目要求是求梯形的面积。求梯形的面积计算公式是S=(a+b)×h÷2,根据公式说明求梯形面积的关键是知道上底、下底和高的长度。
观察已知条件,我们发现这个梯形的下底和高都没有直接给出,因此应先求出下底和高,再求面积。
根据条件,求下底是求上底的一半少0.4的数是多少,列式是:
6÷2-0.4=3-0.4=2.6米。
根据条件,求高是求比上底多2的数是多少,列式是6+2=8(米)。
最后求出梯形面积,直接公式计算就可以了。
解: (1)6÷2-0.4=3-0.4=2.6(米)
(2)6+2=8(米)
(3)(6+2.6)×8÷2
=8.6×8÷2
=68.8÷2
=34.4(平方米)
答:梯形田的面积是34.4平方米。
3.如图:梯形的面积是24平方分米,求梯形的下底是多少厘米?
思路分析:这题已知梯形的面积和上底以及高,求下底的长度,是利用公式逆解的题。
我们可以看出,由于两个完全一样的梯形能够拼成一个平行四边形,要计算梯形的下底,必须先把梯形面积乘以2还原成拼得的平行四边形的面积,平行四边形的高等于梯形的高,平行四边形的底等于梯形的上底和下底之和。这样,我们用拼得的平行四边形面积除以高就得出了梯形上底和下底之和,再减去梯形的上底,就算出了下底的长度。
注意,这题中的高的单位名称、面积的'单位名称与要求的下底单位不统一,应先统一单位,再计算。
解: 24平方分米=2400平方厘米
4分米=40厘米
2400×2÷40-45
=4800÷40-45
=120-45
=75(厘米)
答:这个梯形的下底是75厘米。
4.一个三角形的底是6厘米,面积是12平方厘米,和它等高的平行四边形的底是三角形底的2.5倍,求平行四边形的面积。
思路分析:我们知道,求平行四边形的面积的关键是知道平行四边形的底和高,已知条件中指出,平行四边形的底是三角形底的2.5倍,而三角形的底题目中直接给出,用乘法就可直接求出平行四边形的底了。
题目中又告诉我们三角形和平行四边形等高,因此,只要求出三角形的高就可以了。而求三角形的高又是利用公式逆解的题,这与梯形给出面积利用公式逆解题思路一样,只要先还原成拼得的平行四边形的面积,再算高就可以了。
解: 12×2÷6
=24÷6
=4(厘米)
6×2.5=15(厘米)
15×4=60(平方厘米)
答:平行四边形的面积是60平方厘米。
5.求组合图形的面积。
单位:厘米
思路分析:要求这个组合图形的面积,要先做一条辅助线(如图)。
这样就可以看出这个组合图形是一个梯形和一个长方形组合而成的。梯形的下底就是长方形的长,高就是45减35的差,只要利用梯形和长方形的面积公式就可以计算出这两个基本图形的面积,最后用加法就可求出组合图形的面积了。
解: (1)梯形面积:
(20+50)×(45-35)÷2
=70×10÷2
=350(平方厘米)
(2)长方形面积:
50×35=1750(平方厘米)
(3)组合图形面积:
350+1750=2100(平方厘米)
答:这个组合图形的面积是2100平方厘米。
6.小莉走一步的平均长度是55厘米。她从家走到新华书店的距离是1705米,要走多少步,才能走到?
思路分析:这题是知道平均步长和两地间的距离,求步数的题目。由于这题的单位名称不统一,只要先统一单位,就能直接用两地距离除以平均步长就可以了。
解法一: 1750米=175000厘米
175000÷55=3100(步)
解法二: 55厘米=0.55米
1750÷0.55=3100(步)
答:要走3100步才能走到。
【思维体操】
1.面积相等的两个三角形,第一个底长是40厘米,高是35厘米;第二个底长是70厘米,高是多少厘米?
思路分析:这道题是求三角形的高,是利用公式逆解的题。题目中给出了两个三角形的面积相等,又直接给出了第一个三角形的底和高,这样就求出了第一个三角形的面积,这也就等于知道了第二个三角形的面积,最后再利用三角形的面积公式逆解此题就可以了。
解: 40×35÷2
=1400÷2
=700(平方厘米)
700×2÷70
=1400÷70
=20(厘米)
因为这两个三角形的面积相等,还原成平行四边形的面积也相等。所以还可以还可以这样列式计算:
40×35÷70
=1400÷70
=20(厘米)
答:第二个三角形的高是20厘米。
2.一个三角形和一个平行四边形的面积相等,底也相等,三角形的高是8厘米,平行四边形的高是多少厘米?
思路分析:题目中的三角形和平行四边形的面积相等,也就是 ,不仅面积相等,两个图形的底也相等,也就是a1= a2,要使面积相等,三角形的高必须是平行四边形的高的2倍,才能达到要求,所以三角形的高是这个平形四边形高的2倍。
解:8÷2=4(厘米)
答:平行四边形的高是4厘米。
3.一个三角形与一个长方形面积相等,已知长方形的周长是37厘米,长是16厘米。而三角形的底是长方形长的一半,高是多少?
思路分析:这道题的已知条件指出,三角形与长方形的面积相等,只要求出长方形的面积就等于知道了三角形的面积。
根据条件,已知长方形的周长和长,要先求出宽,才能求面积。我们用37÷2-16就可以算出宽了,再利用公式就求出面积了。
又根据条件,三角形的底是长方形长的一半,就有求出三角形的底,再利用公式逆解就能求出三角形的高了。
解: 37÷2-16
=18.5-16
=2.5(厘米)
16×2.5=40(厘米)
40×2÷(16÷2)
=80÷8
=10(厘米)
答:这个三角形的高是10厘米。
评析:以上三题的解题思路相同,要抓住两个图形面积相等的这个已知条件去分析思考,因此这两题是“面积相等,图形状不同”的题目,求另一图形的底或高,都是利用公式逆解的题目。
要想很快找到解题方法,认真审题非常重要,求面积的公式也要相当熟练,要从题目的已知条件入手,利用公式,求出所求问题。这种思维方法,大家还应掌握。
4.一个正方形的边长增加5厘米,它的面积就会增加95平方厘米,原来的正方形的边长是多少厘米。
思路分析:这题要想求出所求问题,可以根据已知条件,画出一幅平面图,我们可以对照图来分析。
通过画图,我们可以看出,阴影部分的面积就是增加的95平方厘米的面积。而阴影部分是由两个由原正方形为长,5厘米为宽的长方形面积和以5厘米为边长的正方形面积组合而成的。我们只要从95平方厘米中减去5×5的积再除以2再除以5就算出原正方形的边长了。
解: 5×5=25(平方厘米)
95-25=70(平方厘米)
70÷2=35(平方厘米)
35÷5=7(厘米)
答:原正方形的边长是7厘米。
注意,这题不能这样画图。
如果按照上图的画法,等于把正方形的每条边长增加了10厘米,题意理解错,肯定结果就错了。
5.一个平行四边形,若底增加2厘米,高不变,面积就增加4平方厘米。若高减少1厘米,底不变,面积就减少3平方厘米。求原平行四边形的面积。
思路分析:根据题意,我们也可画出这题的平面图。我们也可以对照图来分析。
通过观察图,明显看出,当底增加2厘米,高不变时,原来的平行四边形的面积增加了一个和原来的平行四边形相等的底是2厘米的平行四边形的面积,这样就求出了原来平行四边形的高。
我们还可以从图上看出,当高减少1厘米而底不变时,原来的平行四边形就减少了一个和原来的平行四边形等底、高是1厘米的平行四边形的面积,这样就可算出平行四边形的底了。最后根据条件,就可算出原平行四边形的面积了。
解: 4÷2=2(厘米)
3÷1=3(厘米)
3×2=6(平方厘米)
答:这个平行四边形的面积是6平方厘米。
评析:以上两题是比较复杂的平面图形的有关计算题目。为了使条件和问题形象地展示出来,我们就可以通过图来解决。画图法也是解答数学难题的方法之一,它对于解答数量关系复杂的题目,有着很重要的作用。因此,大家不能忽视画图法的学习。
智能显示
【心中有数】
本单元学习的主要内容:
1.平行四边形面积计算公式的推导;平行四边形面积的计算公式;利用平行四边形面积的计算公式解决实际问题。
2.三角形面积计算公式的推导;三角形面积的计算公式;利用三角形面积的计算公式解决实际问题。
3.梯形面积计算公式的推导;梯形面积的计算公式;利用梯形的面积公式解决一些实际问题。
4.组合图形面积的计算方法以及计算。
5.用工具测地面的直线距离。
6.步测和目测的方法以及有关计算。
2、五年级数学多边形的面积计算教案一等奖
一、教学内容
本单元主要引导学生推导平行四边形、三角形和梯形的面积公式,应用公式计算有关图形的面积,并解决一些简单的实际问题。
这部分教材分四段安排:
第一段,为教材第12~14页的例1、例2、例3和练习二,主要教学平行四边形的面积计算。
第二段,教材第15~18页的例4、例5和练习三,主要教学三角形的面积计算。
第三段,教材第19~21页的例6和练习四,主要教学梯形的面积计算。
第四段,本单元的整理与练习。
此外,还安排了实践与综合应用“校园的绿化面积”,帮助学生综合应用学过的各种图形的面积公式,解决一些稍复杂图形的面积计算问题,进一步体会这部分内容在实际生活中的应用价值。
二、教材的编写特点和教学建议
1.由扶到放,引导学生逐步掌握多边形面积计算的一般策略。
教学平行四边形的面积计算时,由于学生还没有“通过转化推出面积公式”的意识,相关的学习经验比较少,所以既要有宏观的策略指导,也要有具体的方法点拨。即,先要让学生认识到“可以通过转化推出面积计算方法”,再让学生学会“怎样转化”。这部分教材安排了三道例题,例1通过比较两组图形的面积是否相等,引导学生进一步明确:有些复杂的图形可以通过“分和移”转化成相对简单的图形。例2通过动手操作,引导学生掌握把平行四边形转化成长方形的具体方法。例3通过进一步的操作,引导学生经历“猜想、验证、初步归纳、分析推理、得出公式的过程。
教学三角形的面积计算时,考虑到学生已经具有“通过转化推出面积计算方法”的意识和经验,缺少的仅是具体的转化方法,所以教材着重指导“怎样转化”。这部分内容安排了两道例题。例4通过计算平行四边形中三角形的面积,启发学生领悟到:一个平行四边形可以分成两个完全一样的.三角形;反过来,两个完全一样的三角形能拼成一个平行四边形。例5则通过分组操作,引导学生再次经历“猜想、验证、初步归纳、分析推理、得出公式”的过程。
教学梯形面积时,考虑到学生不仅有“通过转化推出面积计算方法”的意识和经验,而且把梯形转化为平行四边形的方法与把三角形转化为平行四边形的方法是类似的,所以教材只安排了一道例题,让学生自主操作并探索梯形的面积公式。
2.要让学生经历公式推导的过程。
多边形面积公式的推导过程有着极为丰富的数学内涵。让学生积极主动地参与这一个过程,不仅能锻炼数学思维、发展空间观念,而且有利于学生领悟一些基本的数学思想方法,增强理性精神和创新意识。因此,要把吸引学生参与推导过程作为教学多边形面积计算的重要内容和目标。以三角形面积公式的推导为例,首先要让学生体会到:要求三角形的面积,可以先想办法把它转化为平行四边形或长方形。而这一点可以通过例4的教学得以实现。教学时,可以先让学生用公式或数方格算出图中每个平行四边形的面积,再让学生直观判断每个涂色三角形的面积。使学生在判断以及表达判断理由的过程中初步认识到:平行四边形可以分成两个完全一样的三角形。由此,启发学生进一步思考:是不是所有的平行四边形都能分成两个完全一样的三角形呢?让学生通过动手操作验证此前的初步认识。在此基础上,提出:如果给你两个完全一样的三角形,你一定能拼成平行四边形吗?让学生在操作中进一步明确:用两个完全一样的三角形一定能拼成一个平行四边形。从而为下面的操作活动提供思考的基础。教学例5时,可以先让学生从附页中任选一个三角形剪下来,并提问:你选的这个三角形可以与例5中的哪个三角形拼成平行四边形?学生操作后,要求算出每个三角形以及拼成的平行四边形的面积,并把相关数据填在例题的表格中,从而建立初步猜想:三角形的面积都可以用“底×高÷2来计算吗?然后,引导学生综合小组内同学得到的数据,验证上面的猜想,并初步归纳出结论。最后,组织讨论教材提出的三个问题,使学生在合乎逻辑的推理中,进一步确认公式是正确的,并感受数学思考的严密性。
3.要充分发挥方格图(点子图)的作用。
教材利用方格图设计的练习主要有以下几种形式:第一,在方格图上给出一个图形,要求学生画出与它面积相等的其他图形。如,第14页第1题,第23页第4题。第二,在方格图上给出一组图形,要求学生判断这些图形的大小关系。如,第17页第5题,第21页第2题,第22页第1题。第三,要求学生在方格图上自主设计图形。如第17页第6题等。这些练习的优点在于:第一,有利于学生把注意力集中在对图形相互关系的思考上,从而避免一些具体测量活动对数学思考本身的干扰;第二,有利于学生通过反复尝试,在不断的调整中作出正确的选择;第三,便于学生直观地验证操作和思考的结果。教学时,一要让学生多准备一些这样的方格纸,以便随时开展此类活动;二要鼓励学生在自主探索的基础上,自觉总结解决问题的有效策略。例如,第23页第4题,图中长方形的面积是15平方厘米,要使画出的平行四边形面积与这个长方形相等,关键是让平行四边形底与高的乘积等于15;要使画出的三角形面积与这个长方形相等,关键是让三角形底与高的乘积等于30(15×2);要使画出的梯形面积与这个长方形相等,关键是让梯形上、下底之和与高的乘积等于30(15×2)。
4.怎样处理推导多边形面积公式的不同方法?
多边形面积公式的推导方法是多样的。教学时,可以选择合适的机会,采用合适的方式,帮助学生对此有所体会,以拓宽解决问题的思路,增强自主探索的兴趣。首先,可以通过教学第16页的“你知道吗”,引导学生初步认识到:多边形面积公式的推导方法不是惟一的。具体教学时,可以先演示“以盈补虚”的过程,引导学生领悟“要使‘盈 和‘虚 相等,就先要找到三角形相应边的中点”,这是解决问题的前提和关键。在此基础上,重点讨论转化后的长方形的长、宽与原三角形底、高的关系,明确:长方形的长等于三角形的高,长方形的宽等于三角形底的一半,因为长方形面积等于长×宽,所以三角形面积等于“半广以乘正从”,即等于底×高÷2。其次,在教学第25页的思考题时,适当提示不同的转化方法。例如,推导梯形面积公式,可以先出示如下图的几个图形,启发学生看图说说图形转化的过程,再讨论转化前、后图形的关系。
也可以先让学生照样子剪一剪,再联系操作过程共同讨论怎样才能推导出面积公式。
5.“校园的绿化面积”要重视实际测量方法的指导。
“校园的绿化面积”这个实践活动的教学目的主要有两个:一是让学生综合应用学过的面积公式计算一些简单组合图形的面积;二是让学生在校园里进行一些实际的测量,并根据测量的数据计算相应多边形的面积,以提高解决简单实际问题的能力。比较起来,前者的目标相对容易实现,因为计算简单组合图形面积的关键是把原图形进行转化,而这个方法是学生比较熟悉的。因此,真正实现后一个教学目标是本次实践活动的难点。教学时,关键是抓住以下几个环节:第一,帮助学生在小组内明确分工,要有人负责测量,有人负责记录;第二,要选择合适的、便于测量的地块;第三,帮助学生选择合适的测量工具,通常可选择卷尺或米尺;第四,要具体指导图形高的测量方法;第五,要提醒学生适当地取近似值,以便于计算。
3、五年级数学多边形的面积计算教案一等奖
教学内容:
五年级第96--97页整理和复习及练习十九
教学目的:
1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。
2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。
3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。
教学重点:
整理完善知识结构、灵活解决实际问题。
教学难点:
掌握多边形面积公式之间的联系。
教具、学具准备:
信封、内装用破纸剪制的三种图形,一张写着长8米,宽6米的长方形的纸。
《多边形面积的整理和复习》教学设计
教学过程:
一、创设情境,促疑凝思
⑴出示问题:
奥运村要种植一块草坪,如果按每平方米6元计算,需要多少元?
⑵如果想预算出这笔钱,还需要了解这块草坪的哪些情况?(形状、面积……)
⑶生活中,经常要运用到一些基本平面图形的面积计算方法的知识,这节课我们将对所学的多边形的面积进行复习和整理。
二、梳理认知,形成结构
1、集中呈现面积公式
⑴我们学过哪些基本平面图形?
根据学生回答,卡纸显示五种图形:长方形、正方形、平行四边形、三角形、梯形。
⑵怎样用字母表示这些图形的面积计算公式?
2、逐个梳理推导过程。
⑴这五种平面图形的'面积计算公式分别是怎样推导出来的呢?
组织学生根据信封中的学具,说一说推导过程。教师巡视帮助。
⑵全班交流。让学生选择图形说面积公式的推导过程。演示该图形面积公式推导过程。
⑶总结方法:以上三种图形都运用了什么方法,推导出它们的面积计算方法?
3、整理完整知识结构。
⑴这些图形面积公式推导之间有什么联系?
⑵大家能否把这五种图形的联系用图表示出来?
小组讨论,尝试画图。
⑶展示学生画图,并让学生说一说是怎样想的。
引导学生观察:从左往右看,根据长方形的面积公式,可以推导出其他图形的面积公式。从右往左看,我们在探讨一种新的图形面积时,都能把它转化成已学过的图形。
三、应用
1、判断。
⑴平行四边形的底越长,它的面积就越大。
⑵三角形的面积是平行四边形面积的一半。
⑶两个三角形可以拼成一个平行四边形。
⑷正方形、长方形是一种特殊的平行四边形。
2、奥运村要种植一块草坪(如图),如果按每平方米6元计算,政府拨款50万元够吗?
3、"小小设计师"
在教学楼前有一块长8米,宽6米的长方形空地,学校准备在这地空地上建造一个花圃,该如何设计花圃建造方案呢?用阴影表示花草的实际种植面积,小组先构思、策划,设计好后,在图纸的下方计算出花草的实际种植面积。
四、总结:
通过这节课的学习你有哪些收获?
五、作业:练习十九第1---4题。
4、五年级数学多边形的面积计算教案一等奖
作为一名教职工,总不可避免地需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么教学设计应该怎么写才合适呢?以下是小编为大家整理的五年级上册数学多边形面积期末总复习教学设计范文,欢迎大家分享。
教学内容:
复习多边形的面积。
教学目标:
1、通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。
2、通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。
3、通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。
教学重点:
整理完善知识结构,灵活运用面积公式解决问题。
教学难点:
沟通多边形面积公式之间的内在联系。
教学准备:有关的课件。
教学过程:
一、构建网络,新知汇总
师:同学们,咱们在第五单元里学习了平行四边形、三角形和梯形的面积及其计算,而且,还接触到了组合图形的面积,大家不仅要会利用面积公式求面积,还要掌握面积公式之间第2页的联系,学会观察组合图形的组成。今天,我们就来复习这部分知识。(板书课题:多边形面积的复习)
师:那么我们是如何根据长方形的面积推倒出平行四边形、三角形和梯形的面积公式呢?请大家从你的头脑记忆库里提取下面的知识,看看谁的记忆库最充实?
讨论:平行四边形、三角形和梯形的面积公式是怎样推导出来的?
师:同位同学可以商量商量。(学生汇报:教师演示)
师:大家在回忆推导公式的过程中,本着把新知转化为旧知的原则,找到了几个面积公式之间的联系。通过这样的梳理,大家对我们的面积公式是不是更加熟悉了。(边说边出示图。见板书设计)
引导学生观察,从左往右看,根据长方形的面积公式可以推导出其他图形的面积公式,从右往左看,我们在探讨一种新的图形面积时,都是把它转化成已学过的图形来计算。
二、查漏补缺,错误汇总
师:现在你们的记忆库中还有内存吗?那,就请大家想一想,你们在利用公式解决问题时有什么容易出错的地方或是需要大家注意的地方?根据学生的回答归纳:
弄清图形,选择公式。2.找对应的底和高。3.注意单位换算。4.三角形和梯形的面积别忘了除以2。5.解决问题时,弄清面积与其他数量的关系。6.看清第3页组合图形是由哪几个简单图形组成的,找简单的解决方法。7.已知面积,求底或高可以用方程解。)
师:看来同学们都特别的善于总结和观察,下面,我们就利用前面的复习来做几组练习。
三、综合练习,巩固提高
(一)按要求解答。(只列式,不计算)
1、平行四边形底是4分米,高2.7分米,求它的.面积?
2、三角形面积是30平方米,底8分米,求它的高?
3、梯形的面积是84平方米,高10米,上底5米,求下底?
师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。
(二)判断题:
1.三角形面积是平行四边形面积的一半。()
2.两个面积相等的梯形,形状是相同的。()
3.两个完全一样的梯形可以拼成一个平行四边形。()
4.两个三角形的高相等,它们的面积就相等。()
5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()看来,同学们的分析和表达能力都很强,现在,我们来解决实际问题。
(三)解决问题第4页1.教材第113页第2题。
出示第2题,引导学生看题。
学生独立解答,并在小组中互相检查。
教师指名板演,然后集体订正。
师:通过计算这些图形面积,你想提醒大家什么?
(计算图形面积时,底和高要对应)
2.教材第116页练习二十五第9题。
(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。
(2)算一算剩下的面积是多少。
方法一:4×4-2×2÷2=14(cm2)方法二:(2+4)×2÷2+2×4=14(cm2)
3.教材第116页练习二十五第10题。
(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?
(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:
①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。
②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。第5页
③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。
(3)全班交流,集体订正。
四、课堂小结。
多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。
5、五年级数学多边形的面积计算教案一等奖
教学目标:
1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。
2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。
教学难点:
应用圆的周长公式和面积公式解决一些和生活相关的实际问题。
教学准备:
圆规,环形图片,教学情境图。
教学过程:
一、创设情境,引入新知
1.出示自然界中的一些环形图片。
(l)观察图片,说说这些图形都是由什么组成的。
(2)你能举出一些环形的`实例吗?
2.引入:今天这节课我们就一起来研究环形面积的计算方法。
二、合作交流,探究新知
1.教学例11。
(1)出示例11题目,读题。
(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。
(3)小组讨论,理清解题思路。
(4)集体交流
①求出外圆的面积。
②求出内圆的面积。
③计算圆环的面积。
(5)学生按步骤独立计算。
(6)组织交流解题方法,教师板书
①求出外圆的面积:3.14102 =314(平方厘米)
②求出内圆的面积:3.1462 =113.04(平方厘米)
③计算圆环的面积:314-113.04=200.96(平方厘米)
(7)提问:有更简便的计算方法吗?
(8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积
还可以利用乘法分配率进行简便计并。
简便计算
3.14102-3.1462
=3.14(102-62)
=3.1464
= 200.96(平方厘米)
答:这个铁片的面积是200.96平方厘米。
2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?
6、五年级数学上册《多边形面积计算》教学反思
本单元教学中我本着:“以学生发展为本,以活动为主线,以创新为主导”的思想。让学生亲身主动地参与学习过程,经历学习中的问题的提出,探索解决问题的方法和途径,在经历中真正理解和掌握知识,体验成功的快乐,同时学生的自主学习能力、创新能力得到了培养。在教学策略上,把多边形面积公式的推导化为学生剪一剪、拼一拼、说一说的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的'知识变得直观形象。
平行四边形面积计算,是学习平面几何初步知识的基础,尤其是平行四边形面积公式的推倒,蕴涵着转化的数学思想,因此,在本单元教学中,我把平行四边形面积计算公式的推导过程作为教学的重中之重,课内给学生充足的时间进行操作和交流,在学生自主探究的基础上推导出计算公式。使学生在学习推导三角形、梯形面积公式时已成顺水推舟之势,轻松、愉悦,学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。
7、五年级数学上册《多边形面积计算》教学反思
下面,结合学生在《多边形面积计算》这一单元中的学习情况,谈一点自己的思考。
(一)多机械记忆,缺灵动思考。
应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。更有甚者,当老师提问:“我们是怎样推导出平行四边形的面积公式的?”他回答道:“平行四边形的面积等于底乘高。”问不对题!学生的反应,促使我对课堂教学进行思考:排除一些学生的领悟能力不强这一客观因素,作为老师,我有没有引导学生把探索活动真正落到实处,有没有关注学生在活动中是否有深刻的体会?而学生,对学习所表现出来的主动意识如何?是积极地自主探索和思考,还是墨守成规地接受书本知识呢?
反思课堂教学,我觉得要在以下几个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式等实践活动,理解相关面积公式的来龙去脉,并且产生深刻的体会;
其次,激发学生积极思考的意识,多边形面积公式的推导过程中,可以让学生在拼图的过程中多说说自己的发现,多说说转化前后图形之间的联系,同桌说,指名说,以“说”促“思”,也能增强学生对本课知识的理解;再次,恰当评价学生的学习情况以及参与意识,要使学生明白,学习的.目的不仅仅是会做作业,学会学习是很重要的一件事,要积极在学习过程中培养自己的学习能力。
(二)面积单位进率严重遗忘
有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,利用一个边长1米的正方形,让学生分别用米作单位和用分米作单位计算面积,从而得出1平方米=100平方分米,再现了面积单位进率的推导过程,帮助学生找回记忆中的知识。但是作业中的情况反应,仍有错误存在。看来有些学生确实忘得一干二净,现在只是老师在黑板上画图说教,把进率塞进学生脑子,效果毕竟不行。但是重教一遍也不可能。另外,诸如千克和克,小时与分等单位之间的进率,遗忘也很多,有待于在复习梳理中加强记忆。学生为什么遗忘得那么严重呢?有人说,我们的教材知识点分得太散,不利于学生的记忆,这也许是原因之一。但是我想,学生在当初学习的时候,也许体验也不够深刻,所以导致容易遗忘。针对这种情况,教师应有意识地在平时的练习中,引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。
(三)审题不清甚至不会审题。
批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。就拿这次单元测验来说吧,“压路机的作业宽度是6米,每小时前进6千米”,“一块长方形布长4米,宽16分米”等,单位名称不统一,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。
当然,关键还是要让学生发现自己存在的问题,主动产生纠正不良习惯的需求。如针对学生的作业错误,让学生自己分析错误原因,想想解决办法,使学生明白,做作业一定要静下心来,从认真读题开始,不读清楚题目不动笔,只有付出细心、耐心,才能把作业做好等。
总之,从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。在以后的教学中,我还准备把做好预习作为培养学生自主学习的一种策略,并且结合学生实际情况,安排“每日一题”的练习,拓展书本知识,激发学生的兴趣,培养学生的学习能力,以确保学生扎实、有效地学好知识。
8、五年级数学上册《多边形面积计算》教学反思
在多边形的面积计算教学中,通过小组活动、操作实践等手段,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。
在计算教学中注重引导学生的自主学习,把学习的权利交给学生,利用小组合作学习,便于培养学生的参与合作精神。教师会积极参与小组的讨论,引导组织好学生的学习活动,真正把课堂还给学生,使学生成为课堂的主人。
学生在练习时发现学生单位进率严重遗忘,作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的知识,利用一个边长1米的正方形,让学生分别用米作单位和用分米作单位计算面积,再现了面积单位进率的推导过程,帮助学生找回记忆中的知识。针对这种情况,我有意识地在平时的练习中,引导学生复习容易遗忘的知识点。在教学实践过程中,教师只有经常反思学生在学习过程中出现的种种问题,分析其成因,才能帮助教师不断改进教学手段,以增强教学效果。应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的学生能够说出来的,作为老师尽量不要代替学生说出来。在课堂上也能从操作、比较到发现前后图形之间的联系,最后得出计算公式。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。
对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式。
9、五年级数学上册《多边形面积计算》教学反思
一直以来,复习课都以理练结合的课堂模式为主,复习时需要既全面又突出重点,由于时间过长,容易使学生厌烦。创新教学模式,不断使学生有新鲜的感觉,更能吸引学生,提高复习效率。复习时我从以下几个方面做起。
一、目标定位。
学生在新知、单元复习后进入了总复习阶段。这节课我主要是对这一单元进一步理解、记忆、总结,融会贯通,完善学生的认知结构。
二、知识梳理。
梳理就是引导学生主动构建知识网络,复习不是把前面知识进行联系的过程,也不是知识的再现,而是获得整理知识建构知识网络的过程。课前我通过了解发现,学生对公式的应用比较熟练,但对公式的推导过程有些遗忘。所以在设计中,我通过动手操作让学生回忆五种平面图形的面积计算公式及他们的推导过程,唤醒学生的记忆,为帮助学生建立概念图提供了必要的准备。为了帮助学生从整体上把握知识内容,在整体中了解各部分知识的生成和发展,以及它们之间的联系,能够很好的帮助学生重组知识结构,我通过知识网络结构图,不但把知识系统化的归纳整理,还将转化思想对今后探究新图形面积时的作用进行渗透。
三、应用。
引导学生用所学的知识解决问题,是复习课的目的之一。。通过应用帮助学生形成对知识的更深层次的理解,提高学生磷火运用知识解决问题的能力,我的复习课应用是分层进行,第一层次是简单运用,夯实基础。第二层次是综合运用,解决问题。让学生再练习中进一步形成知识网络。在这里,为了激发学生的兴趣,我设计了开辟农场菜地这一热门话题,将本单元主要题型融入其中,一题多变,整节课提供了一个接一个的情景,让学生时时有新奇,时时有兴趣。
四、拓展。
复习不能仅仅停留在已有的基础上,应该在基本知识技能方面得到拓展让学生在复习旧知的同时有新的收获,同时也是对学生的知识进行查缺补漏。
但在教学中,我对时间的把握不够准确,导致拖堂,也提醒自己,在今后的教学中,要考虑周全。
10、五年级数学上册《多边形的面积复习》教学反思
一直以来,复习课都以理练结合的课堂模式为主,复习时需要既全面又突出重点,由于时间过长,容易使学生厌烦。创新教学模式,不断使学生有新鲜的感觉,更能吸引学生,提高复习效率。复习时我从以下几个方面做起。
一、目标定位。学生在新知、单元复习后进入了总复习阶段。这节课我主要是对这一单元进一步理解、记忆、总结,融会贯通,完善学生的认知结构。
二.、知识梳理。梳理就是引导学生主动构建知识网络,复习不是把前面知识进行联系的过程,也不是知识的再现,而是获得整理知识建构知识网络的过程。课前我通过了解发现,学生对公式的应用比较熟练,但对公式的推导过程有些遗忘。所以在设计中,我通过动手操作让学生回忆五种平面图形的面积计算公式及他们的推导过程,唤醒学生的记忆,为帮助学生建立概念图提供了必要的准备。为了帮助学生从整体上把握知识内容,在整体中了解各部分知识的生成和发展,以及它们之间的联系,能够很好的帮助学生重组知识结构,我通过知识网络结构图,不但把知识系统化的归纳整理,还将转化思想对今后探究新图形面积时的作用进行渗透。
三.、应用。引导学生用所学的知识解决问题,是复习课的目的之一。。通过应用帮助学生形成对知识的更深层次的理解,提高学生磷火运用知识解决问题的能力,我的.复习课应用是分层进行,第一层次是简单运用,夯实基础。第二层次是综合运用,解决问题。让学生再练习中进一步形成知识网络。在这里,为了激发学生的兴趣,我设计了开辟农场菜地这一热门话题,将本单元主要题型融入其中,一题多变,整节课提供了一个接一个的情景,让学生时时有新奇,时时有兴趣。
四.、拓展。复习不能仅仅停留在已有的基础上,应该在基本知识技能方面得到拓展让学生在复习旧知的同时有新的收获,同时也是对学生的知识进行查缺补漏。
但在教学中,我对时间的把握不够准确,导致拖堂,也提醒自己,在今后的教学中,要考虑周全。