数学有理数的除法优秀教案一等奖
1、数学有理数的除法优秀教案一等奖
从实际生活引入,体现数学知识源于生活及数学的现实意义。
强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算
学生归纳导出法则
(一):除以一个数等于乘以这个数的倒数
小组合作交流探究发现结果
教师强调
(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。
(2)此法则是有理数的除法运算的又一种 方法。
学生自己观察回忆,进行自主学习和合作交流, 得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)
激发学生学习的积极性和主动性满足学生的表现欲和探究欲)
强化练习课本 例2计算 :
(1)(- )÷(-6)÷(- )
(2)( - )÷(- )
学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。
反馈矫正
课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性
归纳小节1、学习内容:倒数的概念及求法;有理数的除法
(二)、通过本节的学习,你有哪些体会?请与同学交流。
同学之间进行交 流,小结本节内容培养了学生总结问题的能力
作业布置 必做题:课本70页第1,3,4题
选做题:若ab≠0,则 可能的`取值是_______.综合考查,学以致用。不同的学生得到不同的发展
板书设计
2.9 有理数的除法
例1计算: 练习处:
例2 计算:
教学反思:
《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了 探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力 。
在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。
2、数学有理数的除法优秀教案一等奖
一、学习目标:
1. 熟练掌握有理数的乘法法 则
2. 会运用乘法运算率简化乘法运算.
3. 了解互为倒数的意义,并会求一个非零有理数的.倒数
二、学习重点:探索有 理数乘法运算律
学习难点:运用乘法运算律简化计算
三、学习过程:
(一)、情境引入:
1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。
2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?
观察 下列各有理数乘法,从中可得到怎样的结论?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、请再举几组数试一试,看上面所得的结论是否成立?
(二)、新课讲解:
有理数乘法运算律
交换律 ab =ba
结合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.计算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.计算
(1)8 (2)(4)( ) (3)( )( )
观察例2中的三个运算, 两个因数有什么 特点?它们的乘积呢?你能够得到什么结论?
(三)、巩固练习:
1.运用运算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.选择题
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同号 D a,b异号
(2)利用分配律计算 时,正确的方案可以是 ( )
A B
C D
3.运用运算律计算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、课堂小结:
通过本节课你学到了哪些知识?你 达成学习目标了吗?
五、作业布置:
课本第42页习题2.5 第3题
数学评价手册
六 、学后记/教后记
3、数学有理数的除法优秀教案一等奖
[教学目标]
1、使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;
2、运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的.思维能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的计算能力,培养转化和全面分析问题的能力、
[教学重点、难点]
1、教学重点:正确运用有理数除法法则进行有理数除法运算;
2、教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件;
3、疑点:乘除法运算顺序、
[教学过程设计]
一、课前复习提问
1、有理数乘法法则;
2、有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;
3、倒数的意义、
二、讲授新课
(一)有理数除法法则的推导
[问题]怎样计算8(—4)呢?
[提问]小学学过的除法的意义是什么?
得出 ①8(—4)=—2;又②8( )=—2;
4、数学有理数的除法优秀教案一等奖
有理数的乘除法
一、教学目标
知识与技能:
①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。
②会进行有理数乘法运算。
③了解有理数的倒数定义,会求一个数的倒数。
过程与方法:
①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。
②提高学生的运算能力
情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、 教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法中的符号法则.
三、教学过程
(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?
如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝
乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法
(二)学生探索新知,归纳法则
学生分为四个小组活动,进行乘法法则的探索
设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:
(1)向右爬行,3分钟后的位置?
(2)向左爬行,3分钟后的`位置?
(3)向右爬行,3分钟前的位置?
(4)向左爬行,3分钟前的位置?
(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。
为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。
(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:
(+2)(+3)=+6
数轴表示如右:
(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6
数轴表示如右:
(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6
数轴表示如右
(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6
数轴表示如右:
仔细观察上面得到的四个式子:
(1)(+2)(+3)=+6
(2)(-2)3=-6
(3)(+2)(-3)=-6
(4)(-2)(-3)=+6
根据你对乘法的思考,你得到什么规律?
(三)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)(+)=( ) 同号得
(-)(+)=( ) 异号得
(+)(-)=( ) 异号得
(-)(-)=( ) 同号得
b.任何数与零相乘,积仍为 。
(四)师生共同用文字叙述有理数乘法法则。
归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0。
(五) 运用法则计算,巩固法则。
例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.
例2. 见课本P30页
(六)分层练习,巩固提高。
(1)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
四.课题小结
(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
五.作业布置
课本P30页练习1,2,3.
1.4.2 有理数的乘法
(第2课时)
一、教学目标:
1、经历探索多个有理数相乘的符号确定法则.
2、会进行有理数的乘法运算.
3、通过对问题的探索,培养观察、分析和概括的能力.
二、教学重点和难点
学习重点:多个有理数乘法运算符号的确定
学习难点:正确进行多个有理数的乘法运算
三、教学过程
(一)、学前准备
请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?
结果怎么样,你能明白其中的数学道理吗?
(二)、探究新知
1、观察:下列各式的积是正的还是负的?
234(-5),
23(-4)(-5),
2(3) (4)(-5),
(-2) (-3) (-4) (-5).
思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
分组讨论交流,再用自己的语言表达所发现的规律:
几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.
2、利用所得到的规律,看看翻牌游戏中的数学道理。
(三)、新知应用
1、例题3,(30页)例3,
请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0
例:7.8(-8.1)O (-19.6)
师生小结:几个数相乘,如果其中又因数为0,积等于0
2、练习
计算
1)、58(7)(0.25) 2)、
四、课堂小结
1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0
五.作业布置
一、选择
1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )
A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负
2.若干个不等于0的有理数相乘,积的符号( )
A.由因数的个数决定 B.由正因数的个数决定
C.由负因数的个数决定 D.由负因数和正因数个数的差为决定
3.下列运算结果为负值的是( )
A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)
4.下列运算错误的是( )
A.(-2)(-3)=6 B.
C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24
二、计算 1、(-7.6) 2、 .
1.4.3 有理数的乘法
(第3课时)
一、教学目标:
1、熟练有理数的乘法运算并能用乘法运算律简化运算.
2、让学生通过观察、思考、探究、讨论,主动地进行学习.
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.
二、教学重点和难点
教学重点:正确运用运算律,使运算简化
教学难点:运用运算律,使运算简化
三、教学过程
一、学前准备
1、下面两组练习,请同学们选择一组计算.并比较它们的结果:
1)(-7)8 8(-7)
[(-2)(-6)]5 (-2)[(-6)5]
2)(- )(- ) (- )(- )
[ (- )](-4) [(- )(-4)]
3)
请以小组为单位,相互检查,看计算对了吗?
二、探究新知
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
三、新知应用
1、例题
用两种方法计算 ( + - )12
2、看谁算得快,算得准
1)(-7)(- ) 2) 9 15.
四、课堂小结
怎么样,这节课有什么收获,还有那些问题没有解决?
乘法交换律:两个数相乘,交换因数的位置,积 相等 .
即:ab= ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等
即:(ab)c= a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
五.作业布置
1、(-85)(-25) 2、(- )15(-1 );
3、( ) 4、 (7).
5、-9(-11)+12(-9) 6、
1.4.4 有理数的除法
(第4课时)
一、教学目标:
1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程.
二、教学重点和难点
教学重点:有理数的除法法则
教学难点:理解商的符号及其绝对值与被除数和除数的关系
三.教学过程
(一)、学前准备
1、师生活动
1)、小明从家里到学校,每分钟走50米,共走了20分钟.
问小明家离学校有 1000 米,列出的算式为 50 20=1000 .
2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.
列出的算式为 1000 =20
从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算
(二)、合作交流、探究新知
1、小组合作完成
比较大小:8(-4) 8(一 );
(-15)3 (-15)
(一1 )(一2) (-1 )(一 )
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
2,运用法则计算:
(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )
3,师生共同完成P34例5.
(三)1、练习:P35
2、P35例6、例7、
3、练习: P36第1、2题
四.课堂小结
通过这节课的学习,你的收获是:
1)、除以一个不等于0的数,等于 乘这个数的倒数.
2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .
五.作业布置
1、计算
(1)(+48)(+6); (2) ;
(3)4(-2); (4)0(-1000).
2、计算.
(1)(-1155)[(-11)(+3)(-5)]; (2)375
1、P39第1、2、3、4题
1.4.5有理数的除法
(第5课时)
一、教学目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
二、教学重点和难点
1、学习重点:有理数的混合运算
2、学习难点:运算顺序的确定与性质符号的处理
三、教学过程
(一)、学前准备
1、计算
1)(0.0318)(1.4) 2)2+(8)2
(二)、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。
3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、186(2) 2)11+(22)3(11)
3)(0.1) (100)
四.课堂小结:请你回顾本节课所学习的主要内容:
1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。
2、计算器的使用。
五、作业 1、P39第7题(4、5、7、8)、 第8题
5、数学有理数的除法优秀教案一等奖
一、目的要求
1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。
二、内容分析
有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。
本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。
三、教学过程
复习提问:
1.小学学过的'倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。
答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。
2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?
答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。
3.小学学过的除法和乘法的关系是什么?
答:除以一个数等于乘上这个数的倒数。
4.5÷0=?0÷0=?
答:0不能作除数,这两个除式没有意义。
新课讲解:
与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。
引例:计算:8×(-)和8÷(-4)
8×(-)=-2,
8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,
∵(-4)×(-2)=8,
∴8÷(-4)=-2。
从而,8÷(-4)=8×(-),
同样,有(-8)÷4=(-8)×,
(-8)÷(-4)=(-8)×(-),
这说明,有理数除法可以利用乘法来进行。
又(-4)×=-1,4×=1,
由4和互为倒数,说明(-4)和(-)也互为倒数。
从而对于有理数仍然有:乘积为1的两个数互为倒数。
提问:-2,-,-1的倒数各是什么?为什么?
注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。
由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。
注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。
例1计算。(见教科书第103页例1)
解答过程见教科书第103页例1。
阅读教科书第102页至第103页。
课堂练习:教科书第104页练习第l,2,3题。
提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?
(答:略)
2.两数相除,商的符号如何确定?为什么?商的绝对值呢?
答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。
从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。
在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。
例2见教科书第104页例2。
解答过程见教科书第104页例2。
注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。
例3见教科书第105页例3。
分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。
对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。
解答过程见教科书第105页例3。
讲解教科书例3后的两个注意点。
课堂练习:见教科书第105页练习。
第1题可直接约分,也可化为除法。
第2题可先化成乘法,并利用乘法的运算律简化运算。
课堂小结:
阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。
提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?
(2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)
四、课外作业
习题2.9A组第1,2,3,4,5题的双数小题,第6题。
选作题:习题2.9B组第1,2,3题双数小题。
6、初一数学有理数的乘法优秀教案及教学反思
一、学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.23
2看作向东运动2米,3看作向原方向运动3次。
结果:向运动米
23=
b.-23
-2看作向西运动2米,3看作向原方向运动3次。
结果:向运动米
-23=
c.2(-3)
2看作向东运动2米,(-3)看作向反方向运动3次。
结果:向运动米
2(-3)=
d.(-2)(-3)
-2看作向西运动2米,(-3)看作向反方向运动3次。
结果:向运动米
(-2)(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)(+)=同号得
(-)(+)=异号得
(+)(-)=异号得
(-)(-)=同号得
b.积的绝对值等于。
c.任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。
(3)学生做P76练习1(1)(3),教师评析。
(4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。
4、讨论对比,使学生知识系统化。
有理数乘法有理数加法
同号得正取相同的符号
把绝对值相乘
(-2)(-3)=6把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)3=-6(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零得零得任何数
5、分层作业,巩固提高。
六、教学反思:
本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。
【点评】:本节课张老师首先创设了一个密切社会生活的问题情景抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。
探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。
为了让学生将获得的`新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到家,并为新知识安家落户。
学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。
本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师教教科书是传统的教书匠的表现,用教科书教才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。
7、《有理数的除法》教学反思
《有理数的除法》是学生已经掌握有理数加法、减法、乘法的基础上进行的,这些运算为学习有理数除法做了铺垫。其教学内容包括:1、有理数除法法则;2、倒数的求法;3、熟练的应用法则进行计算。新课程标准告诉我们初中数学是要让学生经历知识的产生过程,在学生的自主探索和合作交流中掌握知识,形成技能,发展智力。在数学活动中形成数学思想,学会数学的学习方法。因此在本课时中,我主要体现一下几点:
首先,注重知识的迁移,做到以旧代新。 有理数的除法和小学数学的除法的计算方法及其相似。不同之处只是符号问题。所以在新课教学中先复习“小学的除法是乘法的逆运算”和“除以一个数等于乘以这个数的倒数”,再告诉学生这些在有理数范围内同样适用。运用新旧知识的迁移,降低了教学难度,使学生能舒畅的根据乘法算式写出除法算式,为下面探索法则铺平道路。同时也让学生感受以旧代新这种便捷的学习方法。
其次,注重自主探索,体验知识的产生过程。 本课在教学过程中,注重学生主体意识的培养,鼓励学生用自己喜欢的方法进行探索学习。遵循知识的发展规律和学生的认知规律—由易到难,重视学生的.亲身经历。 学生以小组合作的方式通过观察一组算式,找出被除数、除数、商的符号特征和绝对值的特点,进而猜测、推理出一般的除法算式的特点,最后归纳总结除法法则。学生亲历了知识产生的过程,将知识内化。
再次,注重分层教学,让不同层次的学生学有所得。 为了让不同的学生在数学上有不同的发展,一是课堂提问时根据不同难度的问题选择不同的学生;是通过设计有梯度的习题满足不同层次的学生;三是小组活动时,发挥优生的作用,采取一帮一的方法使学困生有所收获。尽量做到全面兼顾,提高课堂实效。 最后,注重突出重点,提高课堂效率。 教学中突出重点,突破难点。让学生在自主探索中弄清除法的两种运算方法:
1、在除式的项和数字不复杂的情况下直接运用除法法则求解,同时遵循“符号优先”原则,即先确定符号,再把绝对值相除。
2、在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算法则解决问题。
8、《有理数除法》教学反思
笔者于本年度暑假期间参加了县教研室组织的暑期培训,其一项目是磨课,课题是《有理数除法》,通过磨课,眼界大开,受益匪浅,同时也产生了几点看法,特记之,以供切磋。
一、关于课题引入
细细地揣摩这部分教材,不难发现教材编写者的意图:小学中已经学习了除法与乘法的关系,明确知道它们互为逆运算,所以,本节课开门见山,直接利用这个关系,通过一组具体的乘除法运算,验证了这种关系在有理数范围内也同样适用,然后通过小帖示,将这种关系一般化,整个设计过程体现了建构思想,同时也渗透了从特殊到一般的数学思想方法,可操作性、针对性是很强的。
在磨课的过程中,有些教师在如何引入这一节课时颇费心思,设计了许多异彩纷呈的情境:利润问题、统计问题等等,这些情境的引入无疑开阔了学生们的'视野,激发了其学习兴趣,加深了对有理数除法应用的认识,但也应看到,如果没有课前充分的预习、酝酿,这会增加学生对所学知识进一步认识的难度——很多学生还没转过神来,就被带到了下一个学习环节里去了。有点喧宾夺主的意味了。
二、有理数除法则(二)的给出
学生通过自主探究、交流、展示,师生整合后得出法则(一):“除以一个不等于0的数,等于乘这个数的倒数,用式子表示为a÷b=a×”之后,不少教师主张给出一个题组,如①(—8)÷(—4);②(—8)÷(—);③8÷(—4);④8÷(—);⑤(—8)÷4;⑥(—8)÷;⑦0÷(—8).让学生根据刚刚得到的法则进行运算,然后观察算式结构与结果特点,总结出有理数除法则(二):“两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个有理数,都得0”。这样处理,与新课标理念并无相悖之处,但教材编写者为什么就没有采用这种方法呢?仔细推敲来,笔者以为上述处理有不妥之处:淡化了有理数乘法与除法之间的内在联系——互逆关系。如此一来,两种算法则的推导就变得相对独立了,有另起炉灶之嫌,破坏了有理数运算体系的有机性,同时对本小节内容来讲,这样处理,使知识变得松散,重点不突出,且占用了较多的课堂时间。
三、完成上述两个法则的认识之后,可放手让学生尝试解决例5,教师通过巡视,发现解题的差异性,并予以展示,通过对比,引导灵活运用两个法则进行运算,使运算简便,然后进行强化训练,熟悉有理数除法运算,这样,层层递进,有利于减缓学生练习的盲目性,比一股脑儿塞给他们要好一点。