简方程的教学反思
1、简方程的教学反思
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的,新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。
为新课奠定了基础。在突破重难点时,我设计借助天平理解解方程的过程,当学生根据例1图意列出方程X+3=9时,我把皮球换成方格出现在大屏幕上时,问学生:“要得出X的值,在天平上应如何操作?”由于问题提的不符合学生实际学习情况,学生一时不知如何回答。我连忙纠正问道:“天平左边有一个X和一个3,怎么让方程左边就剩下X呢?”学生马上回答:“减去3。”师:“天平右边也应该怎么办?”生:“也减去3.”师:“为什么?”生:“天平的两边同时减去相同的数,天平仍然保持平衡。”我因势利导地使学生学习解方程的方法及书写格式。课堂练习时间也不充裕,致使扩展思维题学生没时间去思考,没有达到预想的课堂效果。一节课虽然结束了,却给我留下了难忘的印象,经过认真反思总结如下:
一、教师要进入教材又要走出教材
教师要钻研教材,要吃透教材,准确、全面的弄清教材的精神实质,确定重点难点。但不仅这些,教师还要走出教材,纵观教材前后知识间的联系,横看课内知识与课外知识体系的位置,对本堂课所教知识在教材中的地位和应起的作用有个清晰的认识。教师进入教材是基础,走出教材是目的。惟有如此,才能帮助学生对当前知识进行整合与延伸。
二、教师要善于捕捉教学中的生成性内容
在实际的教学活动中,师生双方的活动往往会激发出来新的生成性内容,有的'内容是学生遗忘的旧知,这时,我们应该帮助学生激活旧知;有的内容又是超越了本堂课的教学要求,教师要帮助学生拓展延伸。生成性的内容它源于教材,又超越于教材,有利于促进学生的成长和发展。
三、教学要前瞻后顾
作为一名数学老师,不管你任教哪一年级,你都应对数学教材有一个系统的认识。在教学中,除了让学生把本册教材的知识掌握扎实,还要帮助学生构建知
识系统。把以前学过的知识与当前知识联系起来,对当前知识又要有拓展延伸的可能。
四、精心的安排练习题
解方程这部分教学内容与老教材相比有很大的差异,尤其是在方程的解法上,利用天平平衡的道理解方程,学生在理解和运用上都有一定的困难,而且本部分教学很是枯燥无味,于是我加入了闯关的情节,精心的安排练习题。当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
2、解方程的教学反思
本节课的内容是在学生学习了用字母表示数、等式的性质的基础上进行学习的。本册教材的解方程不仅安排了形如x+a=bx-a=bax=bx÷a=b这样的简单方程,还安排了形如a-x=ba÷x=b这样的特殊方程。
成功之处:
1、淡化依据逆运算关系解方程,与初中数学相衔接。根据《标准(2011)》的要求,从小学就引入等式的基本性质,并以此为基础导出解方程的方法,这样就避免了同一内容两种思路、两种算理解释的现象,有利于改善和加强中小学数学教学的衔接。从而摒弃了原来依据逆运算解方程的思路,能有效降低学生学习的难度,也降低了记忆的难度。实际上依据逆运算解方程就是用算术的思路求未知数,只适合解一些简单的方程,到了中学还要重新另起炉灶。因此,利用等式的性质解方程能够帮助学生深入的理解方程的意义,能深入理解方程所揭示的等量关系,也更有助于逐步感悟方程的实质、等价思想和建模思想。
2、重点教学特殊方程,体会用等式性质解方程的优势。在例3的教学中,先让学生自主尝试解方程20-x=9,大部分学生依据前面学习的内容写成了下面的.过程:20-x=9
解:20-x+20=9+20
X=29
可是学生经过检验发现x=29并不是方程的解,从而引导学生讨论怎样把新知识转化为旧知识来解决问题。
不足之处:
1、在练习中由于课本这样的练习太少,没有增加相应的题目,学生熟练的程度还是比较欠缺。
2、学生对于归纳总结出来的特殊方程的解法还没有内化,导致学生出现解普通方程和特殊方程在解法上相混淆。
再教设计:
1、及时总结特殊方程的解法:当未知数是减数或除数时,方程两边要同时加上或乘未知数,再解方程。
2、要弄清什么是减数和除数,避免出现不必要的错误。
3、简方程的教学反思
新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的,新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。
为新课奠定了基础。在突破重难点时,我设计借助天平理解解方程的过程,当学生根据例1图意列出方程X+3=9时,我把皮球换成方格出现在大屏幕上时,问学生:“要得出X的值,在天平上应如何操作?”由于问题提的不符合学生实际学习情况,学生一时不知如何回答。我连忙纠正问道:“天平左边有一个X和一个3,怎么让方程左边就剩下X呢?”学生马上回答:“减去3。”师:“天平右边也应该怎么办?”生:“也减去3.”师:“为什么?”生:“天平的两边同时减去相同的数,天平仍然保持平衡。”我因势利导地使学生学习解方程的方法及书写格式。课堂练习时间也不充裕,致使扩展思维题学生没时间去思考,没有达到预想的课堂效果。一节课虽然结束了,却给我留下了难忘的印象,经过认真反思总结如下:
一、教师要进入教材又要走出教材
教师要钻研教材,要吃透教材,准确、全面的弄清教材的精神实质,确定重点难点。但不仅这些,教师还要走出教材,纵观教材前后知识间的联系,横看课内知识与课外知识体系的位置,对本堂课所教知识在教材中的地位和应起的作用有个清晰的认识。教师进入教材是基础,走出教材是目的。惟有如此,才能帮助学生对当前知识进行整合与延伸。
二、教师要善于捕捉教学中的生成性内容
在实际的教学活动中,师生双方的活动往往会激发出来新的生成性内容,有的'内容是学生遗忘的旧知,这时,我们应该帮助学生激活旧知;有的内容又是超越了本堂课的教学要求,教师要帮助学生拓展延伸。生成性的内容它源于教材,又超越于教材,有利于促进学生的成长和发展。
三、教学要前瞻后顾
作为一名数学老师,不管你任教哪一年级,你都应对数学教材有一个系统的认识。在教学中,除了让学生把本册教材的知识掌握扎实,还要帮助学生构建知
识系统。把以前学过的知识与当前知识联系起来,对当前知识又要有拓展延伸的可能。
四、精心的安排练习题
解方程这部分教学内容与老教材相比有很大的差异,尤其是在方程的解法上,利用天平平衡的道理解方程,学生在理解和运用上都有一定的困难,而且本部分教学很是枯燥无味,于是我加入了闯关的情节,精心的安排练习题。当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。
4、认识方程的教学反思
《认识方程》是建立在学生已经学习了用字母表示数基础上进行教学的,他为后面学习稍复杂的方程、分数、百分数方程做铺垫。为此,在教学中我选取了贴近学生生活的事例入手,让学生感到既好玩,又新奇,还富有探索性。
一、想一想猜一猜
我首先从学生喜闻乐见的跷跷板入手,一个男孩和一个小女孩玩跷跷板,小女孩重一些,小男孩轻一些,这一环节就引起了同学们的好奇,一般都是小男孩重,小女孩轻,我这里设计的是小女孩子重,孩子们都笑了,我接下来就说,要想使他们平衡,怎么办?大家异口同声的说:让小男孩用力一些,或给小男孩增加一些重量等才能是跷跷板平衡,这时我问:平衡是什么意思?让学生说出自己的理解。
接下来,我出示天平,要想使左右两边平衡怎么办?学生说:左右两边各方10克的物品,我说10=10太简单了,能否再难一点,让大家算一算啊?学生说:左边放一个10克的砝码,再放一个40克的砝码,右边放一个50克的砝码。我激动的说:“好,”谁来列式?学生马上列出了10+40=50,有的说:左边放一个碗,不知道多重,碗里放10克粉丝,右边放40克,该怎么列式呢?学生乙马上说:可以把碗看做x,等式是10+x=40,这样在学生出题,学生解答,学生争论中,探索出方程,这样不仅可以培养学生的.独立思考能力,而且也培养了学生的合作交流的能力。
二、辩一辩说一说
在探索方程的意义这一环节,我仍然放手让学生从众多的等式当中,和同桌辩一辩,说一说,这些等式之间到底有什么不同?让他们自我总结,自我概括。在x+10和x+10=40这一组中,学生出现了分歧,有的说应该归为一类,因为都有未知数,有的说不应该归为一类,因为前一个没有“=”,最后,通过天平必须平衡这一特点,排除了x+10,它不能使天平平衡,所以不是等式,
想10+40=50,x+10=50才是等式,但是10+40=50是我们以前学过的算式,只有x+10=50我们没有学过它就是方程,方程有什么特点呢?学生很快总结出来了,它含有未知数,它也是等式,所以它是方程。由此,学生在辩论中,思维得到了升华,概念得到了深化。
三、拓展提升
在巩固练习环节,我设计了这样一道题:6x+()=60,23-()=10哪一道题一定是方程?哪一道题可能是方程?由于有了以上基础,学生很快就判断出了第一道题是方程,因为它明显有未知数,第二道题可能是方程,因为()可能是未知数,也可能是数字。
课堂教学中,教师经常设计一些有探索性,有趣味性,有挑战性的教学环节,容易激发学生潜在的能量,容易激发学生的探索欲望,容易调动学生的学习兴趣,也使教学效果更佳!
5、方程的教学反思
合理引导注重建模—六上第一单元《方程》教学反思六年级上册方程这个单元的核心知识点有这样几个:
一是利用等式性质1解形如ax±b=c的方程;
二是利用合并同类项的方式解形如ax±bx=c的方程;
三是能够通过读题、读图、读表的方式找到数量之间的关系。
一、有关直接设句和间接设句
在教学过程中,根据本班孩子的实际情况,对“问题解决”的过程进行了针对性训练,具体地说:在做题目时候要有读题分析的过程,要能主动找到数量之间的关系,并且列出方程。根据解方程的一般步骤,设句分为直接设句和间接设句两种不同的方式。
直接设句:所谓问什么设什么,这是这个单元出现比较多的一种情况,并且在一定时候会出现类似这样的设法:“解:设……为x千克,则……为5x千克”,这种设法是依据题目中的数量关系式来决定的,这在前一篇博文中已经叙述。
间接设句:你要求的问题不方便直接设,需要从中搭起一座桥梁,起到问题解决的目的。在练习册p7第十题分析讲解的时候我提到了这个,原因是我们可以先求出第二套运输方案需要几辆卡车,再求增加多少卡车。因而设的是第二套运输方案需要x辆卡车,根据数量关系式总数不变得到10*12=8x,在解出x之后在减去10辆得到最后确定的数值。
对于间接设句的问题,我以为这不是一种解法而是一种思路,目的就是在于帮助学生理解很多时候走直接设句这条路是走不通的,尤其是一些相对较好学校的分班考试试题,用间接设是很好做的。
二、有关移项的问题
移项是初一上学期一元一次方程的内容,实际上在小学中两个等式性质就是为了这个做准备,对于这个知识点到底讲不讲我是比较纠结的,后来考虑到,有些孩子列出了类似2x-56=x+26的方程,这样的数量关系孩子很清晰,但是方程不会解,这样在应试中丢分是很不值的,当然学校里不讲,外面培训机构是讲的,这样又在一定程度上导致了教育资源的不公平。
虽说这样理解有些扯远了,但是教育部提出的零起点教学是有道理的,所以在处理这个问题的时候我还是讲了移项的方法:“含有未知数的项放在一边(通常是左边也有特殊的,特殊的我没有出现),移项前后要变号,原来是加要变成减,原来是乘要变成除法”,并且我进行了针对性的训练,从目前的情况来说,班级还是有孩子掌握的,对那些好孩子还是有较大帮助的。
另外感觉,练习与测试的难度比原来的评价手册降低了不少,这样的变化我不知道道理是什么,但是我感觉给孩子的训练量和难度上确实降低了不少。
三、有关模型建立的问题
东北师大史宁中教授在新课程标准修订的时候曾经讲过,小学数学基本上是集中模型,“速度×时间=路程”……,这是我记得的,但是在本单元的学习中,出现了两种比较特殊的模型,为了表述清楚,将之命名为“速度和模型”、“速度差模型”,具体说:速度和模型指的是形如:(□+□)×□,先求和再求积;速度差模型指的是形如:(□-□)×□,先求差再求积。
具体地说,这与孩子已经学过的,求两个部分量的和和求两个不分量的差,实际上是一个使用乘法分配律的过程,所不同的是孩子要能体会第一步先求和和先求差的实际意义,因为有些意义是不大好说的,如,在书本p8的第十题和思考,数量关系式可以这样叙述:师傅徒弟每天的相差数×天数=师傅徒弟相差的总数;红球白球每次的'相差数×次数=白球红球相差的总数(也就是10个球)。
当然每一个孩子的理解程度不可同日而语,所以我们允许有差异,孩子选择一个量减去另一个量的数量关系去做也是可以的。
对于方程方法和算术方法而言,有一些题目的解法过程,用算术方法是比较简洁的,但是这个单元学习的是方程,所以我们在做题的时候也是需要用方程做的,但值得提醒的是:有些问题没明确方法,是可以用算术方法做的。
附:
本班级孩子常犯的错误:
1、解方程和在做不用写“解:设”的求x的值时,经常忘记写“解”;
2、孩子的计算成问题,主要体现在不喜欢打竖式,错误重灾区在隔位退位减(如121-89=)、除数是小数的除法(如:0.6÷0.12=)
3、作业速度过慢,部分同学的写字速度让我几乎抓狂。
6、《一元一次方程教学反思》教学反思
方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:
本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的`两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。)再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
7、解方程的教学反思
五年级上册利用等式的性质解方程一直困扰着老师们,因为类似a-x=b的方程,则比较麻烦,因此许多老师就避开等式的性质,转而用四则运算各部分之间的关系进行教学,这样以来势必会削弱学生对等式的性质的理解和掌握。我教学中是这样做的:第一节课时教学学习等式的性质和用等式的性质解方程,在书写上要求学生按这样的格式书写如:
x+100=250
解:x-100+100-100=250-100
X=150
强调我们解方程的根据是等式的性质,即把等式的两边同时减去100,等式左右两边仍然相等,通过练习使学生达到熟练程度。
第二课时教学时,引入类似a-x=b的方程,例如10.5-x=7.5这样的方程,让学生讨论,这样的方程我们如何解呢?有的学生想到了运用减法各部分之间的关系来解方程,即除数等于被除数除以商,也有一部分同学运用等式的性质来解方程,先将方程的'左右两边同时加上x,,即10.5-x+x=7.5+x:方程变成了x+7.5=10.5,再把方程左右两边同时减去7.5,求出x的值;然后引导学生观察在运用等式的基本性质解方程时,方程左边加一个数又减一这个数,可以相互抵消,因此在书写时,可以省略不写,如:15+x=85,15+x-15=85-15,左边可以将加15和减15省略不写,学生很快学会了这种方法。最后引导学生把我们所学习的加减法方程的样式及解法可以归纳如下:
x+a=b
x=b-a(根据:把方程的左右两边同时减去a,等式仍然成立;
或者是想:一个加数=和-另一个加数)
x-a=b
x=b+a(根据:把方程的左右两边同时加a,等式仍然成立;
或者想:被减数=减数+差)
a-x=b
x=a-b(根据:把方程的左右两边同时加x,再把方程左右两边同时减去b等式仍然成立;或者想:减数=被减数-差)
通过以上几个步骤的教学,我班学生对于用等式的基本性质解方程,或是运用加减法各部分间的关系解方程,都能运用自如,并能在后面学习了乘除法的方程后能够自觉进行整理,概括方程的样式和解方程的根据,收到了较好的教学效果。
8、分式方程的教学反思
篇一:
分式是八年级数学的第一章,经历了三周多的学习,学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:
一、教学中的发现
本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。
二、教学中的重建
分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的基本性质做到灵活运用。
再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!
篇二:
本节课我主要采取“361”的课堂教学模式,让学生自习的基础上进上步加深对知识的掌握。这种学习模式符合课改要求,但是经过教学发现,以以往的教学中,学生在解分式方程时需要花费很长时间,学生在有限的时间内难以完成教学任务,但本节课,通过学生的课前的预习,节约的课堂上的时间。
教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。
解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。
要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。
在教学过程中,由于种种原因,存在着不少的不足。
1、回顾引入部分题目有点多,应该选择简单有代表性的一两个题目,循序渐进,符合人类认知规律。
2、教学重点强调力度不够。对学生理解消化能力过于相信,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析。例如,就学生的不同做法进行分析,让他们明白课本的'这种方法最简单最方便。
3、时间掌握不太好。学生预习还不够充分,导致突发事件过多,以致总结过于匆忙。
篇三:
解分式方程的思想是将分式方程转化为整式方程,验根是解分式方程必不可少的步骤。分式方程又是解决实际问题的工具之一。
教学设计中蕴涵的数学思想和数学方法:《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。
教学目标:
1.了解分式方程的概念,和产生增根的原因。
2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
重点、难点
1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。
3.认知难点与突破方法
解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。
要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。
篇四:
本节课的重点是探究分式方程的解法,我首先举一道一元一次方程复习其解法,然后通过解一道分式方程,启发引导学生参照一元一次方程的解法,由学生自己探索、归纳分式方程的解法。学生不是停留在会课本知识层面,而是站在研究者的角度深入其境,使学生的思维得到发挥。
在教学设计上,以探究任务启发引导学生自学自悟的方式,提供了学生自主探究的舞台,营造了锻练思维的空间,在经历知识的发现过程中,培养了学生探究、归纳的能力。在课堂教学中,我时时注意营造思维氛围,让学生在探究中学会思考、表达。
在本课的教学过程中,我认为应从这样的几个方面入手:
1。分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3。解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在教学方法上,我采用类比渗透思想方法进行教学,通过与一元一次方程解法相比较,启发引导学生自主探究、归纳分式方程的解法。运用类比教学法具有以下三方面的优点:
1。通过复习一元一次方程的解法,学生在探究、归纳分式方程解法的同时进行类比,让学生在解分式方程时有法可循,而不会觉得无从下手。
2。把分式方程的解法与一元一次方程的解法进行相比较,让学生既可以温习旧知识,又可以加深对新知识的记忆。
3。通过对一元一次方程和分式方程解法的类比,更能突显分式方程解法中验根的重要性。
篇五:
在本课的教学过程中,我认为应从这样的几个方面入手:
1。分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3。解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
9、直线方程教学反思的
直线方程教学反思(一)
在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。 用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。
教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式。作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的。而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。
对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。
直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。
借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。
直线方程教学反思(二)
关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。
其一,对”倾斜角“概念的形成过程的教学过程中,发现普通班和重点班在表达能力上的'区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”普通班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点--->做直线(3条以上)---->说明区别和联系--->加上直角坐标系---->说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。
其二,对通过的直线的斜率的求解教学,通过给出实际问题,()引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点A(1,1),B(3,4)的直线和通过点A(1,1),C(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。
其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。