五年级数学上册《小数的性质》教学反思
1、五年级数学上册《小数的性质》教学反思
《小数的性质》这节课学生是一种规律性知识,具有探索性学习的价值,因此让学生经历过程会带给学生探索的体验、创新的尝试、实践的机会和发现的能力。基于这一新的理念,教学中我没有将结论直接告诉学生,而是创设了一个“猜想──验证──反思”的情境,让学生自己提出问题,自己通过合作探究去分析问题和解决问题。
一、在情境中猜想。
活泼是孩子的天性,所以学习内容的呈现方式也应该采用学生喜闻乐见的形式。教学伊始,展现在学生面前的是一个幽默风趣的动画情境,在这个模拟的生活情境中,学生从猪八戒的无知中体验到数学知识的价值。他们根据自己已有的生活经验判断出“25.00”和“25”是相等的,并在与同伴的交流中提出了猜想。猜想是否正确并不重要,重要的是它是根据自己已有的知识经验提出的,能够自己提出问题已经向探索迈出了可喜的第一步。
二、在探究中验证。
接着我出示探究内容,内容中既有正例(和0。5相等的小数),也有反例(和0.5不相等的小数)。而教材的例题学习中只有正例(比较0.5和0.50的大小)没有反例,我认为那样不利于探究活动的深入展开。教师应该有意识地设计一些障碍,并及时指导学生寻求跨越障碍的'办法,反思取得成功的经验。没有一定挑战性的活动是不值得探究的,没有在探究中战胜困难的经历,其探究能力是难以获得实质性发展的。
当然,为了使探究活动富有成效,我充分发挥引导者与帮助者的作用。首先,通过设计探究提纲来引导学生探究,然后在具体探究过程中教师又以“参与者”的身份给予更具体的指导,以保证探究活动不被“卡壳”。为了验证猜想是否正确,学生通过合作(先组内合作再组间合作)想出了多种办法,体现了探索活动的多元化和开放性。并通过汇报交流使问题逐渐明朗化,最终推翻了原先的猜想,发现了“小数性质”的本质特征,并对本节课的教学难点(“小数末尾”和“小数点后面”的区别)有了深刻地理解。
2、数学五年级上册《小数除法》的教学反思
1、学生学习水平不一,思维方法不同,在算理的分析上,也各不相同,尽管课前我做了充分的准备,但孩子的想法还是出乎我的预料。对于学生所提出的课本上和教参书都没有提到的方法,我认为只要学生能讲通道理完全可以给与肯定。
2、课堂上我们要鼓励学生独立思考,给学生搭建自由表述自己思想的舞台,更应该通过对各种想法的探讨、辩论,纠正思维的偏差,肯定正确的想法,进而总结出具有普遍应用性的计算方法。这样,学生不仅学会了正确的计算方法,对算理掌握的也就更加深刻。
3、同样是知识的迁移,小数乘法中的解题思路迁移到小数除以整数的除法中同样适用,但小数点位置的确定方法上,小数乘法和小数除法则是截然不同的,再进行迁移则不再适合。让学生明白如何选择合适的数学方法来分析解决问题也应该是数学教师努力的方向。
4、方法重于结果。课堂上,学生在试做例题时,尽管学生想法不同,但根据各自的想法却列出了完全相同的算式。单看结果,好像都学会了,但通过课堂上的讨论、分析,学生最终发现,有的方法适合于各种小数除以整数的题目,有的则经不起推敲,换了题目就行不通了。相信学生通过这节课的学习一定会意识到,学数学不仅仅是算出几道题的正确答案,更重要的是学会计算的方法,只有学会了方法,你才真正掌握了开启智慧之门的钥匙。
3、五年级数学上册《循环小数》的教学反思
本周,我们五年级同课异构的内容是《循环小数》,在上课前,我们组的老师就对着教师用书进行了反复的学习,共同研讨了上课时应注意的问题。循环小数是在学生学习了小数除法的意义、小数除法的计算及商的近似值的基础上进行教学的。这部分内容概念较多,又比较抽象,是教学中的一个难点。
为了让学生便于理解,上课一开始我就先出示了两组重复出现的图案和数字,让学生说说有什么规律?由此让学生感知循环现象。知道图案或数字在“不断重复”,在此基础上告诉学生这种“不断重复”的现象数学上叫“循环”。
在探究循环小数特征时,让学生通过实际计算充分感知数学中的循环现象。教学时我先引出例题,让学生通过小组比赛先做除法,通过实际计算,发现除法算式的三个特点:
(1)总是除不尽,
(2)商不断重复出现“3”
(3)余数不断重复出现“2”。
理解是因为竖式中余数不断出现,决定商不断重复出现,让学生初步感受循环小数的.特点。让学生观察它们的商有什么特点,并想一想商如何表示?为什么使用省略号?在学生弄明白了循环小数的特征的基础上接着概括循环小数的意义,引出循环小数、循环节、有限小数和无限小数的概念。最后做相关练习,巩固新知识。
上完这节课后,我认为以下几方面是做得较好的:
注重创设情景,提高学习兴趣。这节课是概念课,大多数学生都对此不感兴趣,在这节课中,我采用多种多样的教学方法,如猜一猜,找朋友等方法来吸引学生的注意。
注重了小组合作学习。在学生比赛算出2÷6这道算式后,给出相关问题让学生在小组内合作学习,如“为什么商的小数部分总是重复出现“3”?它和每次出现的余数有什么关系?……尽量多给学生有自主学习的机会。
重视学生的阅读,让学生来当小老师。在引出循环小数、循环节、有限小数和无限小数的概念后,我让学生当小老师,找出这些概念中的关键词,并逐个理解,从而使学生对循环小数概念有一个更全面、更完整的认识。
但一节课后我也感觉有许多不足之处:
1、本节课在学生探究的过程中给予学生观察的材料较少,针对循环小数的重点“依次不断重复”这几个关键词语可以再出几道练习题,使学生能牢固的掌握循环小数的特点。
2、在练习的设计中对于循环小数的简写形式可以增加混循环小数的形式,同时也可以增加循环小数与无限不循环小数的区分,使学生更清晰的理解循环小数。其次由于循环小数是学生第一次接触,因此教师可以让学生读一读循环小数,但在教学中仍忽略了这一点。
3、对于商是循环小数的竖式计算,有些学生往往不知道该除到哪一步就不用继续再除,这也是今后教学中需要引起注意的地方。
在今后的教学中我一定要注重以上几个方面的问题课,使自己的课堂教学能为更多的学生服务。
4、五年级数学上册《循环小数》的教学反思
教学时,我从学生功能的思维特点出发,设计复习旧知得出循环小数,再从循环小数的概念——判断——循环节——写法——分类,引导学生观察、比较、分析,逐步加深对循环小数的认识,并注意让学生在应用“新知”的过程中,加深对“新知”的理解。
以往的教学程序上主张“先教后学”,这种教学方法容易造成学生被动地学,不利于学生自觉能动性的发展。我的教学设计能让学生在复习旧知的过程中发现新知,弄清知识的前后联系,培养学生自主探索和自学的能力,养成自己解决新问题的好习惯,变“先教后学”为“先学后教”。遇到难以解决的问题时,课堂上在小组里面交流、探讨,通过小组合作学习,不仅可以使学生有更多的机会对自己的想法进行表述和反省,也可以使学生学会如何去聆听别人的意见并做出适当的评价,使每个学生都获得平等参与的机会,真正做到让每个学生都在原有的基础上有所进步。
练习的设计,我是花了较多的心思。这些练习是有很强的针对性的。一是能针对学生可能会出现的问题,引导学生做进一步思考,有利于加深学生对循环小数的认识;二是注意了结合数学内容训练学生运用概念进行判断、推理,而不是满足于学生简单地回答“是”或“不是”。这样就能培养学生对简单的问题进行判断、推理和“有条有理有根有据地回答问题或叙述理由的能力,进而成为学习的主人。
5、五年级上册数学《认识小数》的教学反思
在数的领域中,学生已经认识了整数和分数,小数的认识是学生在认数领域中的再一次飞跃。在本节课中主要学习的是一位小数,也就是“分母是10的分数”的另一种表示形式。在生活中因为书写的麻烦等各种原因,分数并不常出现,反而随处可见的是小数,与分数相比,小数显得更加实用。此外,小数更为直观形象,计算结果用小数表示有助于我们更好地去把握定位。
通过查阅资料,可以发现小数是在测量过程中产生的,因此在教学设计时决定以测量的操作活动作为导入,一方面符合知识产生的历史;另一方面符合三年级孩子的特性:活泼、好动。让学生动起来,可以调动课堂气氛,使得这节概念课显得不是那么枯燥。
在新知探索部分,首先探索的是整数部分是0的小数,以长度为线索,以长度单位的转换为基础,引起学生的'思考:从小单位换成大单位,不能再用整数表示,该怎么办呢?学生首先想到的是用分数表示,在此基础上,再以十分之一米为例,第一次正式认识小数0.1,因为0.1是一位小数的计数单位,所以0.1的认识还是比较重要的,给学生建立了小数的初步印象,也为认识其他的一位小数奠定了基础。在认识了0.1之后,让学生独立完成自己测量结果的换算。这样从整数到分数,再到小数的形的变化就很完整了,学生对于“分母是10的分数”与一位小数的关系也就有了一定的了解。
在探索整数部分不是0的小数的时候,通过抽象图形的变化,让学生猜测用什么样的小数表示涂色部分,完成了“整数部分是0的小数”到“整数部分不是0的小数”的过渡,再以“我们生活中哪里最常见到小数?”这个问题,将小数引到生活中去,完成了从抽象到具体的过渡,体现了“数学源于生活,又应用于生活”的理念,还是比较自然的。
不足之处:
1. 教学语言还不够严谨,语言表达不够干净利落,在听学生的发言上还不够专心,有的学生明明说的很到位,可能不是我想要的,我给忽略了。尤其忽略了对学生的激励评价,要将数学教活,不仅要有精巧的教学设计,还需要充满感染力的教学语言,学生的精彩发言应该给予及时的肯定与表扬,这不仅是对一个孩子的肯定,更是对她的言行的肯定,能为别的孩子树立起了良好的榜样。
2.对于《认识小数》这一课的思考不是非常深刻,没有注重到引导学生认识学习小数的需要,对于小数的含义的理解不是很到位,学生对小数的认识仅限于最初最浅的认识,如果能在“整数部分是0的小数”到“整数部分不是0的小数”的过渡部分添上一两句:比0.9多0.1是多少呢?或许学生对于小数的认识就能更高一个层次了。
6、五年级数学上册《小数乘小数》教学反思
之前孩子们会算整数乘整数,在学小数乘小数时,我先放手看孩子们的自然状态,结果部分同学因为假期补习孩子们会算,但问其所以然,结果不会说,另一部分就是孩子们的自然状态,例如 2* 0.56=
孩子们按着整数的方法交叉相乘,结果 0.56中的0也与2乘了一遍,孩子们已经有了思维定势,就是每个都与2相乘一遍,并不是想办法把小数转化成整数算,说明学生对把小数扩大或缩小不是很熟练,所以再引入把小数转化成整数时比较牵强,因此对理解上还需大量练习,让孩子知道来龙去脉,对今后的题型变化也做好基础。通过联系之后孩子们熟练了算法脱离了中间的转化环节,直接能算出结果,但是点小数点也成了问题,通过学了因数的小数位数和等于积的'小数位数之后,孩子们学会了简便方法比之前通过转化关系缩小原来的多少分之一这种方法方便不多了,所以感觉数学需要的简单,找到好的计算方法会更容易记住,但同时要明白其中的算理。
7、数学五年级上册《小数除法》的教学反思
《小数除法》在五年级上册的教材中是一个重点也是一个难点。教学中,我先帮助学生回顾了商不变规律的内容,然后以例题的形式完整演示了除数是小数的除法如何转化成除数是整数的除法的方法。通过新旧知识的衔接,借助转化学习让学生掌握小数除法的算法。但从几次作业和练习板演的反馈中,我发现学生各种计算错误还都存在,主要表现在以下几点:
1.第一次试商的位置出错,商过小导致无法继续除下去;
2.除的时候余数的末尾一次性补两个零;
3.漏加商的小数点;
4.验算时用错误的商乘以除数居然能得到正确的被除数;
5.除数扩大了倍数但被除数没变或者不是扩大相同的倍数或者扩大的倍数不适宜;
6.除的时候下拉一个数仍不够除时商忘记添0。
这些看似简单的问题却出现了如此纷繁的错误着实令我头痛,虽然跟学生的基础有一定的关系,但是仔细反思的话,教师在学习新知之前是不是该引导学生对整数除法的练习。在除数是小数的除法的计算方法上还应该具体的细化分析才行。针对以上这些问题,我不得不积极探寻有效的教学策略。首先是教学方式上,我让学生互检作业,在板演的`时候激励学生找茬,并鼓励他们大胆的上台担当小老师指出错在哪里应该怎么改正,同时课外也开展师徒结对的帮扶措施,从目前形势看学生的积极性很高,错误率有所下降。在教学内容上我也不断地站在学生的角度进行调整。
如
1、设置专项训练:针对除数转化成整数后,被除数可能出现:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补0三种情况进行专项练习。
2、横式移位训练:练习在横式中移动小数点位置,转化前后可以用等式连接的算式,清晰而直观。
3、在转化9.36除以5.2时,会出现两种算法:一种是转化成93.6除以52,另一种是转化成936除以520,在这里哪种方法更简单?如果单纯的告诉学生,刚好除数转化成整数就行了似乎也不够明了。怎样才能让学生自己择优选择呢,我想:在两种转化方法出现后,可先出示1.643742除以0.3这样的题,让学生用两种方法转化,感受到根据被除数转化计算时会比较复杂,从而先来择优,再通过0.31除以0.025这题,达到根据除数来扩大倍数转化成整数除法的统一,这样的学习效果应该会好很多。
8、五年级数学上册《小数乘法》的教学反思
小数乘法这个单元的知识是在三、四年级整数乘法和小数的基本认识的基础上的一个延伸。我在教学中本以为学生会轻而易举的掌握知识,可是教学下来学生做题的情况却令我出乎意料。总结起来学生出现问题的情况大致有两种:
1、方法上的错误:不会对位;计算过程出错。小数乘法的对位与小数加减法的对位相混淆;而不是末位对齐。学生在计算过程中花样百出的现象较多,如在竖式计算过程中小数部分的零也去乘一遍;每次乘得的积还得去点上小数点,两次积相加又要去对齐小数点等。
2、计算上的失误:做题马虎、不仔细。看成整数乘法算好后,忘加小数点;或小数点打错位置;或直接写出得数(如2.15×2.1的竖式下直接写出4.515,无计算的过程),做完竖式,不写横式的得数等。 面对这种严峻的情况,使我不得不静下心来重新审视自己的课堂教学,并对此深刻的进行了反思:
一、教师主导性太强在学生做题中出现错误时,我总是急于给同学分析做错的情况,而没有让同学自己找找原因,如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。
二、新授前相关复习不够到位对于学生的学习起点没有一个正确的认识,在学生的基础掌握不好的情况下,就应该先为学生作好铺垫,提前让学生作好整数乘法和小数初步认识的复习,而不应该急于按教学计划开课。如果在开始教学新知识时就把好计算关,给学生夯实基础的话,就不致于出现正确率较低的现象。
三、要注重培养学生的口算能力《新课程标准》指出:口算既是笔算、估算和简算的`基础,也是计算能力的重要组成部分。在平时的教学中,就要多加强口算题的训练,以提高计算正确率。 四、忽视小数乘法和小数加减法计算的根本区别。小数加减法和小数的乘法最根本的区别就是小数点的位置情况,在开课之前我没能作出预料,可是在学生的做题中,我却发现了好多同学在学完小数乘法的末位对齐后,加减法就忘记了小数点对齐。 我想如果我能在课前作好充分的预设,在课上作好强调,学生的出错率也会降低。经过此教学,我找到了自己在教学中存在的问题,也为我在下一部分的教学提了一个醒,使我越来越认识到:没有精心的备课,就没有高效的课堂。没有了反思,就没有自己的教育信念,永远成不了具有自己鲜明个性的教师。
9、五年级数学上册《小数的性质》教学反思
《小数的性质》这节课学生是一种规律性知识,具有探索性学习的价值,因此让学生经历过程会带给学生探索的体验、创新的尝试、实践的机会和发现的能力。基于这一新的理念,教学中我没有将结论直接告诉学生,而是创设了一个“猜想──验证──反思”的情境,让学生自己提出问题,自己通过合作探究去分析问题和解决问题。
一、在情境中猜想。
活泼是孩子的天性,所以学习内容的呈现方式也应该采用学生喜闻乐见的形式。教学伊始,展现在学生面前的是一个幽默风趣的动画情境,在这个模拟的生活情境中,学生从猪八戒的无知中体验到数学知识的价值。他们根据自己已有的生活经验判断出“25.00”和“25”是相等的,并在与同伴的交流中提出了猜想。猜想是否正确并不重要,重要的是它是根据自己已有的知识经验提出的,能够自己提出问题已经向探索迈出了可喜的第一步。
二、在探究中验证。
接着我出示探究内容,内容中既有正例(和0。5相等的小数),也有反例(和0.5不相等的小数)。而教材的例题学习中只有正例(比较0.5和0.50的大小)没有反例,我认为那样不利于探究活动的深入展开。教师应该有意识地设计一些障碍,并及时指导学生寻求跨越障碍的'办法,反思取得成功的经验。没有一定挑战性的活动是不值得探究的,没有在探究中战胜困难的经历,其探究能力是难以获得实质性发展的。
当然,为了使探究活动富有成效,我充分发挥引导者与帮助者的作用。首先,通过设计探究提纲来引导学生探究,然后在具体探究过程中教师又以“参与者”的身份给予更具体的指导,以保证探究活动不被“卡壳”。为了验证猜想是否正确,学生通过合作(先组内合作再组间合作)想出了多种办法,体现了探索活动的多元化和开放性。并通过汇报交流使问题逐渐明朗化,最终推翻了原先的猜想,发现了“小数性质”的本质特征,并对本节课的教学难点(“小数末尾”和“小数点后面”的区别)有了深刻地理解。
10、五年级数学上册《小数乘整数》教学设计与教学反思
篇一:五年级数学上册《小数乘整数》教学设计
一、教材分析
小数乘整数是在学生学习了整数乘法、小数加减法的基础上进行教学的,是小数乘法的起始课。在这之前学生已经掌握了小数点位置移动和积的变化规律等知识,这些都是学生理解很探究小数乘整数的算理和计算方法的知识基础。作为起始课,必须沟通小数乘法和整数乘法的联系,在掌握计算方法的同时更要理解算理。理解小数乘整数的算理及计算方法是重点;算理的理解是难点;而关键是充分运用转化思想,引导学生根据因数与积的变化规律进行转化。本课分层次安排了两个例题。例1依托具体生活情境,让学生运用原有的知识经验自主计算,包括估算、笔算等多种方法,在解决问题 同时,着重让学生理解以元作单位的小数乘法可一转化成以角作单位的整数进行计算,最后再将得数转化成以元做单位的数。运用现实经验进行小数与整数的转化,初步理解算理,感悟小数乘整数的笔算方法。例2脱离具体情境,引导学生应用因数与积的变化规律自主探索计算方法,进一步理解算理,掌握算法。
二、学情分析
作为起始课,必须沟通小数乘法和整数乘法的联系,在掌握计算方法的同时更要理解算理。理解小数乘整数的算理及计算方法是重点;算理的理解是难点;而关键是充分运用转化思想,引导学生根据因数与积的变化规律进行转化。本课分层次安排了两个例题。例1依托具体生活情境,让学生运用原有的知识经验自主计算,包括估算、笔算等多种方法,在解决问题 同时,着重让学生理解以元作单位的小数乘法可一转化成以角作单位的整数进行计算,最后再将得数转化成以元做单位的数。运用现实经验进行小数与整数的转化,初步理解算理,感悟小数乘整数的笔算方法。例2脱离具体情境,引导学生应用因数与积的变化规律自主探索计算方法,进一步理解算理,掌握算法。
三、教学目标
1、依托现实情境,引导学生运用转化思想,沟通小数乘整数与整数乘法之间的联系和区别,从而理解小数乘正数的算理和计算方法。
2.自主探索小数乘整数的计算方法,在观察比较,合作交流中经历知识发生发展的全过程,让学生能正确地计算小数乘整数,提高计算能力。同时培养学生的估算意识和观察、比较、分析概括的能力及知识迁移能力。
3.培养学生的估算意识,渗透转化思想,感受小数乘法在生活中的应用。
四、教学重点和难点
教学重点:理解小数乘整数的算理及计算方法。
教学难点:理解算理。因数扩大一定倍数,积也会扩大相同倍数,为了使积不变2,就要将积缩小相同倍数。
五、教学过程
(一)、复习铺垫
1、0.09米=()厘米3.5元=()角
150千克=()吨 42米 =()千米
2、0.45扩大10倍是( )75缩小它的1/10是 ( )
扩大100倍是( ) 缩小到它的1/100倍是()
扩大1000倍是() 缩小它的1/1000倍是( )
3、0.725去掉小数点,比原来()倍
4、13×12=156
13×120= ( )
13×1200=( )你是怎么想的?
(设计意图:小数与整数的互相转化是学习本课的主要思维方法,而因数与积的变化规律则是转化的主要依据。通过口答练习,为学生探究新知作好知识和思维上的准备)
(二)、自主探索
(1)依托现实情境,初步感悟
1、出示例1情景图,根据信息提出数学问题
选择买3个3.5元的风筝要多少钱进行讨论
(估算大约要多少钱)
2、独立思考,汇报交流
可能会有下列方法:
方法1:连加 。
方法2:化成元角分计算,先算整元,再算整角,最后相加。
方法3:竖式笔算35角×3=105角。
方法4:竖式笔算3.5元×3=10.5元 。
着重请方法4的同学说说是怎么想的。
3、用自己喜欢的方法解决学生提出的其他问题之一
4、小结并揭题:刚才我们在解决买风筝一共用多少钱时,想到了不同的方法。我们发现以元作单位的小数乘整数,可以化[内容来于斐-斐_课-件_园 FFKJ.Net]成以角或分做单位的整数乘法来进行计算。
(设计意图:依托现实情境,让学生根据生活经验,用不同方法解决现实问题。然后通过对方法4的着重讨论,在培养学生估算、计算能力的同时,感悟小数成整数还可以先转化成整数进行计算,初步感悟算理和计算方法)
(2)自主探究,进一步理解算理,掌握计算方法
1、出示0.72×5
现在0.72不再表示钱数,没有了具体的单位,你还能计算出它的得数吗?
2、学生先独立计算然后小组交流 3、汇报演示。
板演计算过程,呈现思考过程
交流时:
①估算,得数是否可能正确
②重点引导学生说清是怎样把乘数转化成整数的',乘积又是如何处理的,为什么可以这样转化?将思考过程板演化。(通过交流和板演,在引导学生描述转化过程的同时进一步理解算理,掌握算法。)
③指出积末尾的0一般的处理方法。
4、反馈练习。
竖式计算14.5×8 3.06×5(注意末尾0的处理)
5、小结
(设计意图:通过独立思考与合作交流,让学生自主探索, 获取小数乘整数的计算方法,进一步理解算理,掌握算法,提高计算能力。)
(三)、巩固联系
1、对比练习:做一做1(比较小数乘整数与整数乘法的联系和区别,进一步沟通两者联系,理解算理,提高计算能力)
2、明辩是非:(培养学生认真仔细的良好计算习惯,正确处理积的小数点)
2. 41.3 50.2 5
× 6× 3× 8
1 2 .4 4 0 .52 0 0
3、笔算。7.08×69.35×8
4、实际问题解决。奉化到宁波40.6千米,来回一趟多少千米?
(四)、课堂总结
(五)、趣味练习
根据45×19=855,直接说出下列算式得
45×190 =45×1.9=
4.5 ×19 =4.5×1.9=
0.45×19 = ( )×( )=0.855
(根据因数与积的变化规律填空,前2-4题是对本课的巩固,后两题是拓展提升,运用知识迁移,让学生感受整数乘法与小数乘整数和小数乘小数是一脉相承的。)
板书设计
小数乘整数
3.5×3=10.5 0.72×5
3.5 -- -3 50.72 扩大到它的100倍7 2
×3 ×3 × 5 × 5 10.5元----105角 3.60缩小到它的1/100 360
教学反思
这节课是小数乘整数的第一课时,主要是让学生理解小数乘整数的意义,掌握小数乘整数的计算法则,培养学生主动获取新知的能力。为了能让学生轻松的掌握新知,我努力的做到了以下几点:
一、复习了整数乘法的意义及整数乘法中由因数变化引起积的变化规律,为学生学习“小数乘整数”做好了铺垫,尤其是掌握了积的变化规律,为学习小数乘整数的算理有很大的帮助。
二、创设了一个“购买风筝”的情境,从而激发了学生的学习兴趣。在解决实际问题中自然的引出了小数乘整数的学习内容,使学生感到亲切自然,学生在浓厚的兴趣中探索新知。
三、在学习过程中,我注重学生的独立思考,如解决实际问题时,我让学生小组合作思考交流解决的方法,在师生的交流学习中,让学生充分的表达自己的观点与计算方法,从而得到许多有创造性的解决办法。然后在老师的启发引导下帮助学生较好地理解小数乘整数的算理及方法。
总之,这节课更关注学生的学习过程,在思考交流的学习中,给不同的学生思维发展的空间,促进了学生的发展。
篇二:五年级数学上册《小数乘整数》教学设计
【教学内容】
义务教育课程标准实验教科书 人教版数学五年级上册第一单元第1课时《小数乘整数》。
【教学分析】
这部分内容是建立在学生已经掌握了整数乘法的意义和计算方法,小数点的移动引起小数大小的变化,积的变化规律,小数的性质等知识的基础上再来进行学习的,它将为后面继续学习小数乘法的应用及四则混合运算打下基础。在本课中,学生要理解小数乘整数的算理,掌握计算方法。
教材从学生熟悉的生活经验情境引入,充分体现数学源于生活的新课程理念。接着让学生体验到算法多样化的思想,理解小数的意义,通过单位转化来初步感知小数乘整数的算理。在第2页,教材让学生通过观察、推理、交流、归纳等数学活动,来进一步理解算理,掌握小数乘整数的计算方法。
【学情分析】
五年级的学生已具有一定的生活经验和已学过的知识为铺垫,也有了较好的数感,这对本节课的学习起到了正迁移的作用。学生的思维是以直观的形象思维为主,正在向抽象思维过渡,因此学生要抽象的用两次转化的思想来理解小数乘整数的算理还是有一定的难度的。他们的概括、归纳能力还处于薄弱阶段,所以不要求他们准确的用数学语言描述出计算方法。
【教学目标】
1.知识与技能目标:经历探索小数乘整数计算方法的过程,理解小数乘整数的 算理,掌握计算方法,学会简单的运用
2.过程与方法目标:经历观察、比较、分析、归纳等数学活动,培养学生的语言表达能力,进一步发展学生的抽象思维能力
3.情感态度价值观:体验数学与生活密不可分的关系,获得运用已学的知识解 决新计算问题的成功体验
【教学、具准备】课件、练习纸
【教学过程】
一、生活情境,提出问题(预计1-2分钟)
1.课件呈现,寻找信息
设问:从图中你能看出哪些数学信息呢? 2.提出问题,揭示课题
说一说:今天我们就一起来解决“买3个3.5元的风筝多少元钱” 的问题,你能列出算式吗?
追问:这个算式和我们以前学过的算式有什么不同呢? 引导:今天我们就来学习小数乘整数(板书)
二、尝试练习,探究算理(预计23-25分钟)
(一)探究算理 1.估算范围
(1)估一估:3.5×3大约是多少?
(2)算一算:学生估算,可能出现以下几种结果: 估算1:
3.5×3≈3×3=9 比9多
估算2: 3.5×3≈4×3=12 比12少
估得3.5×3的积的范围大致在9和12之间
2.感知算理
(1)算一算:要想知道3.5×3精确值是多少,可以怎样计算? 学生在草稿本上尝试计算,教师巡视 巡视期间,师抽生板演 板演展评
(2)说一说:抽生说一说思考过程
3个3.5就表示3个3.5的和,这就是小数乘整数的意义,也就是求几个相同小数的和的运算。
把小数拆分成整数 把3.5变成3元5角,先3元乘3,再5角乘3,最后把它加起来 。
利用竖式的计算方法,把元转化成角来计算,即把小数乘法转化成整数来做。
引导:第三种方法中把小数转化成整数,那你是怎么想的呢?
小结:3.5转化成35,也就是小数点向又移动了一位,即扩大到原来的10倍,在小数点移动的规律中,一个因数扩大到原来的10倍,积就扩大到原来的10倍,要使积不变,就要缩小到原来的1/10,所以结果就是10.5
3.明确算理
(1)想一想:现在老师手上只有一根4.6米长的线,老师放风筝需要5段这样长的线,你知道老师需要线的长度是多少米吗?先自己独立思考,如果无从下手的同学,可以向老师要准备题,,如果还是有困难,可以自学课本,也可以向同学老师请教。
(2)算一算:学生在草稿本上尝试计算,教师巡视 巡视期间,师抽生板演 板演展评
引导:你是怎么想的呢?
(3)说一说:抽生说一说思考过程 预设:
4.6 扩大到原来的10倍 X5X5缩小到原来的1/10 2 3 0 引导:横式上的积为什么是23呢?
小结:根据小数的性质,积的小数末尾的0可以去掉。
(二)概括算法
(1)观察:观察上面竖式,因数的小数位数与积的小数位数之间有什么联系? (2)想一想:小数乘整数应怎么计算?
(3)说一说:请同桌互相说说你的发现和计算方法。
小结: 1.看:把小数乘整数看做整数乘整数,按整数乘法算出积
2.数:数因数有几位小数
3.点:从积的右边起数出几位,点上小数点 注意:积的小数部分末尾有“0”,要把“0”去掉
三、拓展应用,巩固新知(预计13-15分钟)
(一)基本技能练习
1.计算
想一想:小数乘整数与整数乘整数有什么不同?
2.用竖式计算
12.4×7 12.04×5 12.25×8 10.25×8 3.森林医生
1.7处方 1.6 处方 × 5 × 5 8.5 8.0 (二)计算方法应用
(1)下图是一块长方形菜地。如果宽扩大到原来的1.6倍,则菜地的面积会增加多少平方米? 12米
(2)要下雨了,小丽看见远处的闪电,4秒后听到了雷声,闪电的地方离小丽有多远?(雷声在空气中的传播速度是0.34千米/秒 )。
(三)思维发展练习
四、课堂总结,深化新知(预计3-4分钟)
这节课你们学到了什么?你是怎么学会的?你认为还有什么地方要用到转化的思想 五、当堂检测,知识落实1.在括号内填上适当的数
2.计算下面各题
2 .60.4 70.9 5 10.4
X 5X 1 5X4 X 9