说课稿

高中数学《反函数》一等奖说课稿

2023-08-12 19:41:30

  高中数学《反函数》一等奖说课稿

高中数学《反函数》一等奖说课稿

1、高中数学《反函数》一等奖说课稿

  作为一名优秀的教育工作者,编写说课稿是必不可少的,编写说课稿助于积累教学经验,不断提高教学质量。那么你有了解过说课稿吗?下面是小编为大家整理的高中数学《反函数》说课稿,欢迎大家分享。

  我担任高职单招辅导班的数学科教学,可以说每节课都是复习课。今天,我说的是复习课这种课型。内容是《函数》这一章中的“反函数”这一节。

  一、教材分析:

  反函数这一节在《函数》这章中是一个难点,篇幅不多(课时少),在高考考纲中的要求也比较简单。但我个人这样认为,复习课应尽量把与本节内容相关的新旧知识系统地串在一起,所以在备课时要找一条能把知识点连在一起的线索。这线索就是函数的三要素:

  (一)教学目标:

  ①使学生掌握反函数的概念并能求出简单函数的反函数(考纲要求)。

  ②互为反函数的两个函数具有的性质,以及这些性质在解题中的运用。

  ③通过知识的系统性,培养学生的逆向思维能力和逻辑思维能力。

  (二)重点、难点:

  ①重点:使学生能求出简单函数的反函数。

  ②难点:反函数概念的理解。

  二、教学方法:

  整节课采用传统的讲解法。

  首先要认识反函数应先有函数的概念这知识,用例子来说明反函数的求法以及让学生来完成一题没有反函数的函数,从而得出一个不满足函数定义的关系式,通过分析来得到一个函数具有反函数的.条件。这里是用“欲擒故纵”的手法,加深对概念的理解,也是突破难点的关键。

  三、学生学习方法:

  学生认识了反函数的求法(步骤),在老师的引导下得出三个结论,并运用这些结论来解题。希望能达到提高学生性质的解题能力和思维能力的目标。

  四、教学过程:

  (一)温故:函数的概念、三要素

  (二)新课:例1:求y=2x+1的反函数

  解:

  即(x∈R)

  注意步骤,新关系式满足从R到R是一个函数关系式。

  互这反函数的特点:

  ①运算互逆;②顺序倒置

  例2:y=x2(x∈R)用y的代数表示x

  得x=这x不是y的函数,不满足函数定义

  若对,y=x2的定义域改为x≥0

  可得x=,即y=(x≥0)

  当逆对应满足函数定义,原函数才存在反函数。

  得到结论①互为反函数的定义域、值域交换

  即

  分别在同一坐标上画出以上互为反函数的图象

  得到结论②图象关于y=x对称

  ③单调性一致

  (三)练习

  1、求的反函数,并求出反函数的值域。

  2、函数的图象关于对称,求a的值。

  讲评:略。

  (四)小结:

  (五)布置作业:

2、高中数学《反函数》一等奖说课稿

  作为一名教师,就难以避免地要准备说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?下面是小编为大家整理的高中数学《对数函数的图像与性质》说课稿,仅供参考,大家一起来看看吧。

  一、说教材

  1、教材的地位和作用

  函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

  2、教学目标的确定及依据

  根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

  (1)知识目标:掌握对数函数的'图像与性质;初步学会用对数函数的性质解决简单的问题。

  (2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

  (3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

  3、教学重点与难点

  重点:对数函数的图像与性质。

  难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。

  二、说教法

  学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

  1、教学方法:

  (1)启发引导学生观察、联想、思考、分析、归纳;

  (2)采用“从特殊到一般”、“从具体到抽象”的方法;

  (3)渗透数形结合、分类讨论等数学思想方法;

  (4)用探究性教学、提问式教学和分层教学。

  2、教学手段:

  计算机多媒体辅助教学。

  三、说学法

  “授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

  (2)主动式学习:学生自己归纳得出对数函数的图像与性质。

  四、说教程

  1、温故知新

  我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

  设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  2、探求新知

  研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。

  在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

  设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

  3、课堂研究,巩固应用

  例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。

  例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。

  例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

  设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

  4、巩固练习

  使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

  5、课堂小结

  引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

  (1)掌握对数函数的图像与性质,体会数形结合的思想方法;

  (2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

  6、作业:p97习题3,4,5

  选做题6题

3、高中数学《反函数》一等奖说课稿

  一、教材分析

  1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。

  2、教学目标的确定及依据

  A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:

  1)已知一个角的一个三角函数值能求这个角的其他三角函数值;

  2)证明简单的三角恒等式。

  B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。

  C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

  3、教学重点和难点

  重点:同角三角函数基本关系式的推导及应用。

  难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。

  二、学情分析:

  学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。

  三、教法分析与学法分析:

  1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。

  2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。

  四、教学过程设计

  例1、设计意图:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。本题主要利用的数学解题思想是:分类讨论

  例2、设计意图:

  (1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以 ,将分子、分母转化为 的代数式;还可以利用商数关系解决。

  (2)“化1法”,可利用平方关系 ,将分子、分母都变为二次齐次式,再利用商数关系化归为 的分式求值;

  五、教学反思:

  如此设计教学过程,既复习了上一节的.内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut;教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut;的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。

  由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。

4、反比例函数复习与小结《反比例函数小结与思考》教学设计一等奖

  作为一名教职工,可能需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。我们应该怎么写教学设计呢?以下是小编收集整理的【反比例函数复习与小结】《反比例函数:小结与思考》教学设计,欢迎大家分享。

  [教学目标]

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的'模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△x

  POD的面积为________

  3. 设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1。6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

5、 初中数学第五册《指数函数与对数函数的性质及其应用》教案一等奖

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的`点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

6、高一数学《指数函数》教案一等奖

  导语:讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,以下是小编为大家精心整理的人教版高一数学《指数函数》教案,欢迎大家参考!

  教学目标

  1。使学生掌握的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

  2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

  (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

  教学设计示例

  课题

  教学目标

  1。 理解的定义,初步掌握的图象,性质及其简单应用。

  2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

  3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  教学重点和难点

  重点是理解的定义,把握图象和性质。

  难点是认识底数对函数值影响的认识。

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一。 引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

  1。6。(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 。

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

  由学生回答: 。

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

  一。 的概念(板书)

  1。定义:形如 的函数称为。(板书)

  教师在给出定义之后再对定义作几点说明。

  2。几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的'性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

  (1) ,  (2) ,   (3)

  (4) ,   (5) 。

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3。归纳性质

  作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

  函数

  1。定义域 :

  2。值域:

  3。奇偶性 :既不是奇函数也不是偶函数

  4。截距:在 轴上没有,在 轴上为1。

  对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

  在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

  二。图象与性质(板书)

  1。图象的画法:性质指导下的列表描点法。

  2。草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

  最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

  3。性质。

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

  (2) 时, 在定义域内为增函数, 时, 为减函数。

  (3) 时, ,      时, 。

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

  三。简单应用    (板书)

  1。利用单调性比大小。  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

  例1。 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;

  (3) 与1 。(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

  解: 在 上是增函数,且

  < 。(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性。

  (2) 自变量的大小比较。

  (3) 函数值的大小比较。

  后两个题的过程略。要求学生仿照第(1)题叙述过程。

  例2。比较下列各组数的大小

  (1) 与 ;  (2) 与   ;

  (3) 与 。(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1,<1,>。

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0。

  三。巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ;

  (3) 与 ; (4) 与 。解答过程略

  四。小结

  1。的概念

  2。的图象和性质

  3。简单应用

  五 。板书设计

7、高一数学《指数函数》教案一等奖

  导语:讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性,以下是小编为大家精心整理的人教版高一数学《指数函数》教案,欢迎大家参考!

  教学目标

  1。使学生掌握的概念,图象和性质。

  (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

  (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

  (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。

  2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

  3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

  教学建议

  教材分析

  (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

  (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。

  (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

  教法建议

  (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。

  (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

  关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

  教学设计示例

  课题

  教学目标

  1。 理解的定义,初步掌握的图象,性质及其简单应用。

  2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

  3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  教学重点和难点

  重点是理解的定义,把握图象和性质。

  难点是认识底数对函数值影响的认识。

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一。 引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

  1。6。(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  由学生回答: 与 之间的关系式,可以表示为 。

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

  由学生回答: 。

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

  一。 的概念(板书)

  1。定义:形如 的函数称为。(板书)

  教师在给出定义之后再对定义作几点说明。

  2。几点说明 (板书)

  (1) 关于对 的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

  若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

  (2)关于的定义域 (板书)

  教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的'性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

  (3)关于是否是的判断(板书)

  刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

  (1) ,  (2) ,   (3)

  (4) ,   (5) 。

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

  最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3。归纳性质

  作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

  函数

  1。定义域 :

  2。值域:

  3。奇偶性 :既不是奇函数也不是偶函数

  4。截距:在 轴上没有,在 轴上为1。

  对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

  在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

  二。图象与性质(板书)

  1。图象的画法:性质指导下的列表描点法。

  2。草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

  最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

  填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

  3。性质。

  (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

  (2) 时, 在定义域内为增函数, 时, 为减函数。

  (3) 时, ,      时, 。

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

  三。简单应用    (板书)

  1。利用单调性比大小。  (板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

  例1。 比较下列各组数的大小

  (1) 与 ;  (2) 与 ;

  (3) 与1 。(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

  解: 在 上是增函数,且

  < 。(板书)

  教师最后再强调过程必须写清三句话:

  (1) 构造函数并指明函数的单调区间及相应的单调性。

  (2) 自变量的大小比较。

  (3) 函数值的大小比较。

  后两个题的过程略。要求学生仿照第(1)题叙述过程。

  例2。比较下列各组数的大小

  (1) 与 ;  (2) 与   ;

  (3) 与 。(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出 >1,<1,>。

  解决后由教师小结比较大小的方法

  (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

  (2) 搭桥比较法: 用特殊的数1或0。

  三。巩固练习

  练习:比较下列各组数的大小(板书)

  (1) 与      (2) 与 ;

  (3) 与 ; (4) 与 。解答过程略

  四。小结

  1。的概念

  2。的图象和性质

  3。简单应用

  五 。板书设计

8、初中数学《变量与函数》教案一等奖

  教学目标

  ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义.能分清实例中的常量与变量,了解自变量与函数的意义.

  ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力.

  ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.

  教学重点与难点

  重点:函数概念的形成过程.

  难点:正确理解函数的概念.

  教学准备

  每个小组一副弹簧秤和挂件,一根绳子.

  教学设计

  提出问题:

  1.汽车以60千米/时的速度匀速行驶.行驶里程为s千米,行驶时间为t小时.先填写下面的表,再试着用含t的式子表示s:

  t(小时) 1 2 3 4 5

  s(千米)

  2.已知每张电影票的售价为10元.如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

  3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

  注:(1)让学生充分发表意见,然后教师进行点评.

  (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.

  动手实验

  1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,

  观察并记录弹簧长度的变化,填入下表:

  悬挂重物的质量m(kg)

  弹簧长度l(cm)

  如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

  2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示).设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

  注:分组进行实验活动,然后各组选派代表汇报.

  通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的.关系,学会了运用表格形式来表示实验信息.

  探究新知

  (一)变量与常量的概念

  1.在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程.其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的.在一个变化过程中,数值发生变化的量,我们称之为变量.也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量.

  2.请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.

  3.举出一些变化的实例,指出其中的变量和常量.

  注:分组活动.先独立思考,然后组内交流并作记录,最后各组选派代表汇报.

  培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.

  (二)函数的概念

  1.在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

  师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有惟一确定的值.

  2.分组讨论教科书P.7 “观察”中的两个问题.

  注:使学生加深对各种表示函数关系的表达方式的印象.

  3.一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.

  同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

  在人口统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52.

  巩固新知

  下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

  1.右图是北京某日温度变化图

  2.如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

  3.国内平信邮资(外埠,100克内)简表:

  信件质量m/克 O<m≤20 20<m≤40 40<m≤60

  邮资y/元 O.80 1.60 2.40

  注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法.

  总结归纳

  1.常量与变量的概念;

  2.函数的定义;

  3.函数的三种表示方式.

  注:通过总结归纳,完善学生已有的知识结构.

  布置作业

  1.必做题:教科书P.18 习题11.1第1题.

  2.选做题:教科书P.18 习题11.1第2题.

  3.备选题:

  (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

  ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

  ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

  ③14、15、16日的日平均温度有什么关系?

  ④点A表示的是哪天的日平均温度?大约是多少度?

  ⑤说说这一周的日平均温度是怎样变化的.

  (2)如右图所示,梯形上底的长是x,下底的长是15,高是8.

  ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数.

  ②用表格表示当x从10变到20时(每次增加1),y的相应值.

  ③当x每增加1时,y如何变化?说说你的理由.

  ④当x=0时,y等于多少?此时它表示的是什么?

  (3)研究表明,土豆的产量与氮肥的施用量有如下关系:

  施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

  土豆产量(吨/公顷) 15.18 21.36 25.72 32.29 34.03 39.45 43.15 43.46 40.83 30.75

  ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数.

  ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由.

  ④简单说一说氮肥的施用量对土豆产量的影响.

  设计思想

  变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃.因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律.遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力.同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题.还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人.

9、《函数的概念》高一数学教案一等奖

  一、教材分析

  1、 教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二、新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1.     给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的'对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:

  1、  函数是非空数集到非空数集的映射。

  2、    f表示对应关系,在不同的函数中f的具体含义不一样。

  3、f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  4、集合a中的数的任意性,集合b中数的唯一性。

  5、“f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三、讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0*x+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四、课时小结:

  1.  映射的定义。

  2.  函数的近代定义。

  3.  函数的三要素及符号的正确理解和应用。

  4.  函数近代定义的五大注意点。

相关文章

推荐文章