五年级上册知识点总结8篇
五年级上册知识点总结第1篇
总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它是增长才干的一种好办法,让我们一起认真地写一份总结吧。那么你知道总结如何写吗?下面是小编收集整理的八年级数学上册基础知识点总结,希望能够帮助到大家。
第十一章全等三角形
1、全等三角形的性质:全等三角形对应边相等、对应角相等。
2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。
3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等
4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
第十二章轴对称
1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3、角平分线上的点到角两边距离相等。
4、线段垂直平分线上的任意一点到线段两个端点的距离相等。
5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6、轴对称图形上对应线段相等、对应角相等。
7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8、点(x,y)关于x轴对称的点的坐标为(x,—y)
点(x,y)关于y轴对称的点的坐标为(—x,y)
点(x,y)关于原点轴对称的点的坐标为(—x,—y)
9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
10、等腰三角形的判定:等角对等边。
11、等边三角形的三个内角相等,等于60°,
12、等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形。
有两个角是60°的三角形是等边三角形。
13、直角三角形中,30°角所对的直角边等于斜边的一半。
14、直角三角形斜边上的中线等于斜边的一半
第十三章实数
※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
※正数的立方根是正数;0的立方根是0;负数的立方根是负数。
数a的相反数是—a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
第十四章一次函数
1、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。
2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。
3、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
6、已知两点坐标求函数解析式(待定系数法求函数解析式):
把两点带入函数一般式列出方程组
求出待定系数
把待定系数值再带入函数一般式,得到函数解析式
7、会从函数图象上找到一元一次方程的`解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)
第十五章整式的乘除与因式分解
1、同底数幂的乘法
※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);
⑤公式还可以逆用:(m、n均为正整数)
2、幂的乘方与积的乘方
※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。
※3、底数有时形式不同,但可以化成相同。
※4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。
※6、幂的乘方与积乘方法则均可逆向运用。
3、整式的乘法
※(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
※(2)单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
※(3)多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得
4、平方差公式
¤1、平方差公式:两数和与这两数差的积,等于它们的平方差,
※即。
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
5、完全平方公式
¤1、完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
¤即;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2、结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3、在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。
添括号法则:添正不变号,添负各项变号,去括号法则同样
6、同底数幂的除法
※1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。
※2、在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。
②任何不等于0的数的0次幂等于1,即,如,(—2.0=1),则00无意义。
③任何不等于0的数的—p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0—1,0—3都是无意义的;当a>0时,a—p的值一定是正的;当a<0时,a—p的值可能是正也可能是负的,如,
④运算要注意运算顺序。
7、整式的除法
¤1、单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2、多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
8、分解因式
※1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
※2、因式分解与整式乘法是互逆关系。
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘。
五年级上册知识点总结第2篇
原文
学校操场北边墙上满是爬山虎。我家也有爬山虎,从小院的西墙爬上去,在房顶上占了一大片地方。
爬山虎刚长出来的叶子是嫩红的,不几天叶子长大,就变成嫩绿的。爬山虎的嫩叶,不大引人注意,引人注意的是长大了的叶子。那些叶子绿得那么新鲜,看着非常舒服。叶尖一顺儿朝下,在墙上铺得那么均匀,没有重叠起来的,也不留一点儿空隙。一阵风拂过,一墙的叶子就漾起波纹,好看得很。
以前,我只知道这种植物叫爬山虎,可不知道它怎么能爬。今年,我注意了,原来爬山虎是有脚的。爬山虎的脚长在茎上。茎上长叶柄的地方,反面伸出枝状的六七根细丝,每根细丝像蜗牛的触角。细丝跟新叶子一样,也是嫩红的。这就是爬山虎的脚。
爬山虎的脚触着墙的时候,六七根细丝的头上就变成小圆片,巴住墙。细丝原先是直的,现在弯曲了,把爬山虎的`嫩茎拉一把,使它紧贴在墙上。爬山虎就是这样一脚一脚地往上爬。如果你仔细看那些细小的脚,你会想起图画上蛟龙的爪子。
爬山虎的脚要是没触着墙,不几天就萎了,后来连痕迹也没有了。触着墙的,细丝和小圆片逐渐变成灰色。不要瞧不起那些灰色的脚,那些脚巴在墙上相当牢固,要是你的手指不费一点儿劲,休想拉下爬山虎的一根茎。
五年级上册知识点总结第3篇
一、正数和负数
1、以前学过的0以外的数前面加上负号—的数叫做负数。
2、以前学过的0以外的数叫做正数。
3、零既不是正数也不是负数,零是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。
二、有理数
1、正整数、0、负整数统称整数,正分数和负分数统称分数。
2、整数和分数统称有理数。
3、把一个数放在一起,就组成一个数的集合,简称数集。
三、数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。
(2)正数都大于零,负数都小于零,正数大于负数。
四、相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、零的相反数是零。
五、绝对值
1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
六、有理数的大小比较
1、正数大于0,0大于负数,正数大于负数。
2、两个负数,绝对值大的反而小。
七、有理数的加法
1、有理数的加法法则
(1)号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)互为相反数的两个数相加得零。
(4)一个数同零相加,仍得这个数。
2、有理数加法的运算律
(1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a
(2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)
八、有理数的减法
1、有理数减法法则
减去一个数,等于加这个数的相反数。即a—b=a+(—b)
九、有理数的乘法
1、有理数的乘法法则
(1)两数相乘,同号得正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,都得0。
(3)乘积是1的两个数互为倒数。
(4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(5)几个数相乘,有一个因数为零,积就为零。
2、有理数的乘法的运算律
(1)乘法交换律:两个数相乘,交换因数的位置,积相等。即ab=ba
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即(ab)c=a(bc)
(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即a(b+c)=ab+ac
十、有理数的除法
1、有理数除法法则
(1)除以一个不等于0的数,等于乘这个数的倒数。
(2)零不能作除数。
(3)两数相除,同号得正,异号得负,并把绝对值相除。
(4)0除以任何一个不等于0的数,都得0。
十一、有理数的乘方
1、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
2、负数的奇次幂是负数,负数的偶次幂是正数。
3、正数的任何次幂都是正数,0的任何正整数次幂都是0。
十二、有理数混合运算的运算顺序
1、先算乘方,再算乘除,最后算加减;
2、同极运算,从左到右进行;
3、有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
十三、科学记数法
1、把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的'是科学记数法。
2、用科学记数法表示一个n位整数,其中10的指数是n—1。
十四、近似数和有效数字
1、接近实际数目,但与实际数目还有差别的数叫做近似数。
2、精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
4、对于用科学记数法表示的数a10n,规定它的有效数字就是a中的有效数字。
五年级上册知识点总结第4篇
总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,通过它可以正确认识以往学习和工作中的优缺点,让我们好好写一份总结吧。那么如何把总结写出新花样呢?下面是小编整理的苏教版物理八年级上册知识点总结,希望对大家有所帮助。
物态变化
1.温度:是指物体的冷热程度。测量的工具是温度计,温度计是根据液体的热胀冷缩的原理制成的。
2.摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。
3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。
体温计:测量范围是35℃至42℃,每一小格是0.1℃。
4.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
5.固体、液体、气体是物质存在的三种状态。
6.熔化:物质从固态变成液态的过程叫熔化。要吸热。
7.凝固:物质从液态变成固态的过程叫凝固。要放热.
8.熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。
9.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。
10.熔化和凝固曲线图:
11.(晶体熔化和凝固曲线图) (非晶体熔化曲线图)
12.上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。
13.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。都要吸热。
14.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。
15.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。
16.影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。
17.液化:物质从气态变成液态的过程叫液化,液化要放热。使气体液化的方法有:降低温度和压缩体积。(液化现象如:“白气”、雾、等)
18.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。
19.水循环:自然界中的水不停地运动、变化着,构成了一个巨大的水循环系统。水的循环伴随着能量的转移。
声现象
一、声音的发生与传播
常考点
1一切发声的物体都在振动。用手按住发音的音叉,发音也停止,该现象说明振动停止发声也停止。振动的物体叫声源。
2、声音的传播需要介质,真空不能传声。在空气中,声音以看不见的声波来传播,声波到达人耳,引起鼓膜振动,人就听到声音。
3真空不能传声,月球上没有空气,所以登上月球的宇航员们即使相距很近也要靠无线电话交谈,因为无线电波在真空中也能传播。
4、声音在介质中的传播速度简称声速。一般情况下,v固>v液>v气声音在15℃空气中的传播速度是340m/s。
5、回声是由于声音在传播过程中遇到障碍物被反射回来而形成的。如果回声到达人耳比原声晚0.1s以上人耳能把回声跟原声区分开来,此时障碍物到听者的距离至少为17m。在屋子里谈话比在旷野里听起来响亮,原因是屋子空间比较小造成回声到达人耳比原声晚不足0.1s最终回声和原声混合在一起使原声加强。
利用:利用回声可以测定海底深度、冰山距离、敌方潜水艇的远近测量中要先知道声音在海水中的传播速度,测量方法是:测出发出声音到受到反射回来的声音讯号的时间t,查出声音在介质中的传播速度v,则发声点距物体S=vt/2。
二、我们怎样听到声音
常考点
1、声音在耳朵里的传播途径:外界传来的声音引起鼓膜振动,这种振动经听小骨及其他组织传给听觉神经,听觉神经把信号传给大脑,人就听到了声音.
2、骨传导:声音的传导不仅仅可以用耳朵,还可以经头骨、颌骨传到听觉神经,引起听觉。这种声音的传导方式叫做骨传导。一些失去听力的人可以用这种方法听到声音。
3、双耳效应:人有两只耳朵,而不是一只。声源到两只耳朵的距离一般不同,声音传到两只耳朵的时刻、强弱及其他特征也就不同。这些差异就是判断声源方向的重要基础。这就是双耳效应.
三、声音的三个特性
1、音调:人感觉到的声音的高低。音调跟发声体振动频率有关系,频率越高音调越高;频率越低音调越低。物体在1s振动的次数叫频率,物体振动越快频率越高。频率单位次/秒又记作Hz。。
2、响度:人耳感受到的声音的大小。响度跟发生体的振幅和距发声距离的远近有关。物体在振动时,偏离原来位置的距离叫振幅。振幅越大响度越大。
增大响度的主要方法是:减小声音的发散。
3、音色:由物体本身决定。人们根据音色能够辨别乐器或区分人。
4、区分乐音三要素:闻声知人——依据不同人的音色来判定;高声大叫——指响度;高音歌唱家——指音调。
四、噪声的危害和控制
常考点
1、物理学角度看,噪声是指发声体做无规则的杂乱无章的振动发出的声音;环境保护的角度噪声是指妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音起干扰作用的声音。
2、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。
3、减弱噪声的'方法:在声源处减弱、在传播过程中减弱、在人耳处减弱。
五、声的利用
常考点
可以利用声来传播信息和传递能量。(选择题)
电路知识点
⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。电路有通路、断路(开路)、电源和用电器短路等现象。
⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。
绝缘体在一定条件下可以转化为导体。
电荷的知识点
(1)电荷是物质的一种物理性质。称带有电荷的物质为“带电物质”。
(2)电荷,为物体或构成物体的质点所带的正电或负电,带正电的粒子叫正电荷(表示符号为“+”),带负电的粒子叫负电荷(表示符号为“﹣”)。
(3)使物体带电的方法
①摩擦起电
实质:电子在不同物体间的转移.
电子从一个物体转移到另一个物体。用毛皮摩擦过的橡胶棒带负电;用丝绸摩擦过的玻璃棒带正电。
②感应起电
实质:将金属导体中的电子从物体的一部分转移到另一部分。
当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷。这种现象叫做静电感应。利用静电感应使金属导体带电的过程叫做感应起电。
五年级上册知识点总结第5篇
1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。
如:1。5×3表示1。5的3倍是多少或3个1。5的`和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。
如:1。5×0。8就是求1。5的十分之八是多少。
1。5×1。8就是求1。5的1。8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:
加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
减法:减法性质:a—b—c=a—(b+c)a—(b—c)=a—b+c
乘法:乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a—b)×c=a×c—b×c】
除法:除法性质:a÷b÷c=a÷(b×c)
五年级上册知识点总结第6篇
对知识与方法进行归纳总结是系统复习的中心工作。下面就是小编整理的八年级上册数学知识点总结,一起来看一下吧。
一、轴对称图形
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。
3、轴对称图形和轴对称的区别与联系。
4、轴对称的性质。
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2、线段垂直平分线上的点与这条线段的两个端点的距离相等。
3、与一条线段两个端点距离相等的点,在线段的垂直平分线上。
三、用坐标表示轴对称小结:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。
2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
四、(等腰三角形)知识点回顾
1、等腰三角形的性质。
①、等腰三角形的两个底角相等。(等边对等角)
②、等腰三角形的.顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1、等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定
等腰三角形性质
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
角
等边对等角
等角对等边
边
底的一半<腰长<周长的一半
两边相等的三角形是等腰三角形
4、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
五年级上册知识点总结第7篇
学习八年级政治知识好问的人,只做了五分种的愚人;耻于发问的人,终身为愚人。下面是小编为大家精心推荐的人教版八年级政治上册知识点归纳,希望能够对您有所帮助。
八年级政治上册知识点归纳
竞争合作求双赢
1、竞争,对人的发展和社会进步有促进作用。它赋予我们压力和动力,能激发潜能,提高学习和工作效率;使我们客观的评价自己,提高自己的水平;能使我们的集体更富有生气,丰富我们的生活,增添学习生活乐趣。
竞争,也有不利的一面。使胜者骄败者馁;引起过分紧张和焦虑;使人产生忌妒心理。
2、如何正确看待忌妒心理?
忌妒是竞争的副产品。有时是人们进取的动力,但忌妒心理是一种微妙强烈又隐蔽的消极情感,是拿别人的成绩惩罚自己的消极心理,对我们的发展有很大危害。要消除忌妒心理,培养健康的竞争意识。
3忌妒心理的危害:有碍于人际关系的和谐,有害自己的身心健康,情况严重者可能会不择手段地进行竞争,做出害人又害己的违法行为。
4、竞争过程必须遵守的基本准则是(道德)和(法律),,还应遵守(公平的`法则)。
5、我们参与竞争的目的?
在于超越自我,开发潜能,激发学习热情,提高工作效率,取长补短,共同进步。
6、合作的核心是(发扬集体主义精神)。
7、合作是共享的(基础),共享是合作的(必然结果)。
8、合作是事业成功的土壤。合作能聚集力量、启发思维、开阔视野、激发创造性,并培养同情心、利他心和奉献精神。合作容易获得他人的支持和帮助,更容易取得胜利。
9、竞争与合作的关系:
(1)合作与竞争,不是水火不容的关系,而是相互依存,你中有我,我中有你的关系。
(2)竞争离不开合作,没有合作的竞争是孤单的竞争,孤单的竞争是无力的。
(3)合作也离不开竞争,没有竞争的合作是一潭死水,竞争是为了更好的合作。
10、在合作中竞争的内涵:
(1)团体的通力合作鼓励各个成员间相互竞争
(2)成员间相互竞争促进团体竞争力的提高
11、“在竞争中合作”体现着(双赢)的原则。(相互促进、共同提高),是竞争中合作的真谛。
12、怎样对待竞争对手?
在竞争中合作要体现“双赢”原则,竞争对手不能相互排斥,造成两败俱伤,而要相互促进、共同提高。
13、怎样在合作中竞争?
(1)要尊重竞争对手,向竞争对手学习。取长补短,携手共进。
(2)要找准自身的优势,扬长避短,敢于与他人竞争。
(3)正确对待成功与失败,不以成败论英雄。
14、(取长补短,携手共进),是我们在合作中竞争的目标。
15、如何在竞争中合作?
(1)在竞争中合作应体现“双赢”原则
(2)要正确处理好自己与他人的关系
(3)需要我们形成团队精神
16、怎样处理好自己与他人的关系?
学会欣赏他人,发现别人的长处,虚心向别人学习;学会理解和谅解别人。
17、团队精神的含义及核心?
含义:是团队内部形成的上下一致、相互支持、密切合作、无私奉献的群体精神。
核心是集体主义,是合作共享、乐于奉献,是个人利益服从团队利益。
五年级上册知识点总结第8篇
总结知识点,学习、复习起来更加方便。下面是七年级上册数学知识点总结,希望对大家有帮助。
第一章 有理数
1.1正数和负数
①把0以外的数分为正数和负数。0是正数与负数的分界。
②负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数
1.2有理数
1.2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。正整数,0,负整数统称整数。
1.2.2数轴
①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数
①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数 负数的相反数是正数
1.2.4绝对值
①绝对值 |a|
②性质:正数的绝对值是它的本身
负数的绝对值的它的相反数
0的绝对值的0
1.2.5数的大小比较
①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。两个负数,绝对值大的反而小。
1.3有理数的加减法
1.3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(a+b)+c=(a+c)+b
1.3.2有理数的减法
①减去一个数,等于加这个数的相反数。a-b=a+(-b)
1.4有理数的乘除法
1.4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。ab=ba
⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=(ac)b
⑦乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac
1.4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数。
②两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减 的顺序进行。
1.5有理数的乘方
1.5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a叫做底数,n 叫做指数。
②负数的奇次幂是负数,负数的偶次幂的正数。
③正数的任何次幂都是正数,0的任何正整数次幂都是0。
④做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
1.5.2科学记数法。
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
1.5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数。
②近似数与准确数的接近程度,可以用精确度表示。
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章 整式的加减
2.1整式
①单项式:表示数或字母积的式子
②单项式的系数:单项式中的数字因数
③单项式的次数:一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。
⑤多项式里次数最高项的次数,叫做这个多项式的次数。
⑥单项式与多项式统称整式。
2.2 整式的加减
①同类项:所含字母相同,而且相同字母的次数相同的单项式。
②把多项式中的同类项合并成一项,叫做合并同类项。
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
④如果括号外的因数是正数,去括号后原括号内各项的`符号与原来的符号相同。
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
第三章 一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二) 去括号与去分母
①一般步骤:1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程
利用方程不仅能求具体数值,而且可以进行推理判断。
第四章 图形认识初步
4.1多姿多彩的图形
4.1.1几何图形
①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。(主视图,俯视图,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体
①几何体也简称体。
②包围着体的是面。面有平的面和曲的面两种。
③面和面相交的地方形成线。(线有直线和曲线)
④线和线相交的地方是点。(点无大小之分)
⑤点动成线 ,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法
4.2 直线,射线,线
①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角
4.3.1角
①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
4.3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
③等角的补角相等。
④等角的余角相等。