高中物理电学知识点总结8篇
第1篇高中物理电学知识点总结
总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以使我们更有效率,不如我们来制定一份总结吧。但是却发现不知道该写些什么,下面是小编整理的高中物理知识重点总结-力学部分,欢迎阅读,希望大家能够喜欢。
1、基本概念:
力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速
2、基本规律:
匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;
牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;
天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系冲量与动量变化的关系功与能量变化的关系);
动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的`量度)
重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;
简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;
3、基本运动类型:运动类型受力特点备注
直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力1。匀加速直线运动2。匀减速直线运动
曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧
(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析
简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析
4、基本方法:
力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法假设法);
处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s—t图像、v—t图像);
解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法5、常见题型:
合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。
斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。动量机械能的综合题:
(1)单个物体应用动量定理、动能定理或机械能守恒的题型;(2)系统应用动量定理的题型;
(3)系统综合运用动量、能量观点的题型:①碰撞问题;
②爆炸(反冲)问题(包括静止原子核衰变问题);
③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);④子弹射木块问题;
⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);⑥单摆类问题:
⑦工件皮带问题(水平传送带,倾斜传送带);
⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);机械波的图像应用题:
(1)机械波的传播方向和质点振动方向的互推;(2)依据给定状态能够画出两点间的基本波形图;
(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;
(4)机械波的干涉、衍射问题及声波的多普勒效应。
第2篇高中物理电学知识点总结
在日常的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是一些常考的内容,或者考试经常出题的地方。哪些知识点能够真正帮助到我们呢?以下是小编为大家整理的初中物理电学部分的知识点总结,希望能够帮助到大家。
1、电流的产生:由于电荷的定向移动形成电流。
电流的方向:①正电荷定向移动的方向为电流的方向
理解:在金属导体中形成的电流是带电的自由电子的定向移动,因此金属中的电流方向跟自由电子定向移动的方向相反。而在导电溶液中形成的电流是由带正、负电荷的离子定向移动所形成的,因此导电溶液中的电流方向跟正离子定向移动的方向相同,而跟负离子定向移动的方向相反。
②电路中电流是从电源的正极出发,流经用电器、开关、导线等流回电源的负极的。电流的三效应:热效应、磁效应和化学效应,其中热效应和磁效应必然发生。
2、电流强度:表示电流大小的物理量,简称电流。
①定义:每秒通过导体任一横截面的电荷叫电流强度,简称电流。I=Q/t
②单位:安(A)常用单位有毫安(mA)微安(μA)
它们之间的换算:1A=103 mA=106μA
③测量:电流表
要测量某部分电路中的电流强度,必须把安培表串联在这部分电路里。在把安培表串联到电路里的时候,必须使电流从“+”接线柱流进安培表,并且从“—”接线柱流出来。
在测量前后先估算一下电流强度的大小,然后再将量程合适的安培表接入电路。在闭合电键时,先必须试着触接电键,若安培表的指针急骤摆动并超过满刻度,则必须换用更大量程的安培表。
使用安培表时,绝对不允许经过用电器而将安培表的两个接线柱直接连在电源的两极上,以防过大电流通过安培表将表烧坏。因为安培表的电阻很小,所以千万不能把安培表并联在用电器两端或电源两极上,否则将造成短路烧毁安培表。
读数时,一定要先看清相应的量程及该量程的最小刻度值,再读出指针所示数值。
3、串联电路电流的特点:串联电路中各处的电流相等。I=I1=I2
并联电路电流的特点:并联电路干路中的电流等于各支路中的电流之和I=I1+I2
4、电压是形成电流的原因,电源是提供电压的装置
5、①电压的单位:伏特,简称伏,符号是V。
常用单位有:兆伏(MV)千伏(KV)毫伏(mV)微伏(μV)
它们之间的换算:1MV=103KV 1KV=103V 1V=103 mV 1mV=103μV
②一些常见电压值:一节干电池1。5伏一节铅蓄电池2伏人体的安全电压不高于36伏照明电路的电压220伏动力电路的`电压380伏
③测量:电压表
要测量某部分电路或用电器两端电压时,必须把伏特表跟这部分电路或用电器并联,并且必须把伏特表的“+”接线柱接在电路流入电流的那端。
每个伏特表都有一定的测量范围即量程,使用时必须注意所测的电压不得超出伏特表的量程。如若被测的那部分电路或用电器的电压数值估计的不够准,可在闭合电键时采取试触的方法,如果发现电压表的指针很快地摆动并超出最大量程范围,则必须选用更大量程的电压表才能进行测量。在用伏特表测量电压之前,先要仔细观察所用的伏特表,看看它有几个量程,各是多少,并弄清刻度盘上每一个格的数值。
6、串联电路电压的特点:串联电路的总电压等于各部分电压之和。U=U1+U2并联电路电压的特点:并联电路各支路两端的电压相等。U=U1=U2
7、电阻:电阻是导体本身的一种性质,是表示导体对电流阻碍作用大小的物理量。与导体两端的电压及通过导体的电流都无关。
电阻的单位:欧姆,简称欧,代表符号Ω。
常用单位有:兆欧(MΩ)千欧(KΩ)它们的换算:1MΩ=106Ω 1KΩ=103Ω
8、决定电阻大小的因素:导体的电阻跟它的长度有关,跟横截面积有关,跟组成导体的材料有关,还跟导体的温度有关。
9、滑动变阻器:通过改变接入电路导线长度改变电阻值的仪器。
接法:一上一下作用:改变电路中的电流
铭牌含义:“100Ω 2A”表示最大阻值为100Ω允许通过的最大电流为2A
注意点:滑动变阻器在接入电路时,应把滑片P移到变阻器电阻值最大的位置,从而限制电路中电流的大小,以保护电路。
10、变阻箱:通过改变接入电路定值电阻个数和阻值改变电阻大小的仪器。变阻箱有旋钮式和插入式两种。它们都是由一组阻值不同的电阻线装配而成的。调节变阻箱上的旋钮或拔出铜塞,可以不连续地改变电阻的大小,它可以直接读出电阻的数值。
11、欧姆定律
内容:一段导体中的电流,跟这段导体两端的电压成正比,跟这段导体的电阻成反比。公式:I=U/R
12、电阻的串联:串联电路的总电阻,等于各串联电阻之和。R总=R1+R2
13、电阻的并联:并联电路的总电阻的倒数,等于各并联电阻的倒数之和。1/R总=1/R1+1/R2
14、串联分压,分压与电阻成正比;并联分流,分流与电阻成反比。
第3篇高中物理电学知识点总结
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它能使我们及时找出错误并改正,让我们抽出时间写写总结吧。我们该怎么去写总结呢?以下是小编为大家整理的高中物理重点知识点总结,欢迎阅读与收藏。
一.时间和时刻:
①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。
②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。
二.位移和路程:
①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的.大小等于又向线段的长度,位移的方向由初始位置指向末位置。
②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。
三.位移与路程的关系:
位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。
1、时刻和时间间隔
(1)时刻和时间间隔可以在时间轴上表示出来。时间轴上的每一点都表示一个不同的时刻,时间轴上一段线段表示的是一段时间间隔(画出一个时间轴加以说明)。
(2)在学校实验室里常用秒表,电磁打点计时器或频闪照相的方法测量时间。
2、路程和位移
(1)路程:质点实际运动轨迹的长度,它只有大小没有方向,是标量。
(2)位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段来表示,位移的大小等于质点始、末位置间的距离,位移的方向由初位置指向末位置,位移只取决于初、末位置,与运动路径无关。
(3)位移和路程的区别:
(4)一般来说,位移的大小不等于路程。只有质点做方向不变的无往返的直线运动时位移大小才等于路程。
3、矢量和标量
(1)矢量:既有大小、又有方向的物理量。
(2)标量:只有大小,没有方向的物理量。
4、直线运动的位置和位移:在直线运动中,两点的位置坐标之差值就表示物体的位移。
要想提高学习效率,首先要端正自己的学习态度.养成良好学习习惯,做好课前预习是学好物理的前提;主动高效地听课是学好物理的关键;及时整理好学习笔记,课后的练习要到位,多做题才能丰富自己的解题经验.
第4篇高中物理电学知识点总结
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
四、用累加、累积的方法求通项公式
对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。
例:设数列{an}是首项为1的.正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首项为1的正项数列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用构造数列方法求通项公式
题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有 an(或Sn)的式子,使其成为等比或等差数列,从而求出an(或Sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。
例:已知数列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
(1)求{an}通项公式 (2)略
解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
∴{an--}是首项为a1--,公比为--1的等比数列。
由a1=2得an--=(--1)n-1(2--) ,于是an=(--1)n-1(2--)+-
又例:在数列{an}中,a1=2,an+1=4an-3n+1(n∈N*),证明数列{an-n}是等比数列。
证明:本题即证an+1-(n+1)=q(an-n) (q为非0常数)
由an+1=4an-3n+1,可变形为an+1-(n+1)=4(an-n),又∵a1-1=1,
所以数列{an-n}是首项为1,公比为4的等比数列。
若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。
又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略
解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1
第5篇高中物理电学知识点总结
对于物理中电学公式知识点内容,希望同学们能很好的`掌握下面的内容。下面是小编带来的是初中电学公式知识点总结,希望对您有帮助。
1电流强度:I=Q电量/t
2电阻:R=ρL/S
3欧姆定律:I=U/R
4焦耳定律:
⑴Q=I2Rt(普适公式)
⑵Q=UIt=Pt=UQ电量=U2t/R(纯电阻公式)
5串联电路:
⑴I=I1=I2
⑵U=U1+U2
⑶R=R1+R2
⑷U1/U2=R1/R2(分压公式)
⑸P1/P2=R1/R2
6并联电路:
⑴I=I1+I2
⑵U=U1=U2
⑶1/R=1/R1+1/R2[R=R1R2/(R1+R2)]
⑷I1/I2=R2/R1(分流公式)
⑸P1/P2=R2/R1
7定值电阻:
⑴I1/I2=U1/U2
⑵P1/P2=I12/I22
⑶P1/P2=U12/U22
8电功:
⑴W=UIt=Pt=UQ(普适公式)
⑵W=I^2Rt=U^2t/R(纯电阻公式)
9电功率:
⑴P=W/t=UI(普适公式)
⑵P=I2^R=U^2/R(纯电阻公式)
第6篇高中物理电学知识点总结
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/
s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的.夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
第7篇高中物理电学知识点总结
导语:马上要考试了,同学们复习好了吗?特别是上了高中的同学,高中数学难度大了不少,下面小编为同学们带来了高中文科数学知识点总结,希望对同学们有所帮助。
篇一:
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、
空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。
选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线 高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与
指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函
数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应
用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应
用
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算
高中数学 必修1知识点第一章 集合与函数概念
〖1.1〗集合
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是aM,或者aM,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
n
nnn
(7)已知集合A有n(n1)个元素,则它有2个子集,它有21个真子集,它有21个非空子集,它有22
非空真子集.
【1.1.3】集合的基本运算
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
【1.2.1】函数的概念
(1)函数的概念
①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到
B的一个函数,记作f:AB.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的.两个函数才是同一函数. (2)区间的概念及表示法
①设a,b是两个实数,且ab,满足axb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数x的集合叫做开区间,记做(a,b);满足axb,或axb的实数x的集合叫做半开半闭区间,
,分别记做[ab),x,ax,b的x实b数x的集合分别记做,(a,b];满足xa
[a,)a,(,)b,(,.b
注意:对于集合{x|axb}与区间(a,b),前者a可以大于或等于b,而后者必须
篇二:
高中数学 必修1知识点
第一章 集合与函数概念 【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N
或N表示正整数集,Z
表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是aM,或者aM,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
(7)已知集合真子集.
A有n(n1)个元素,则它有2n个子集,它有2n1个真子集,它有2n1个非空子集,它有2n2非空
【1.1.3】集合的基本运算
(8)交集、并集、补集
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
(2)一元二次不等式的解法
〖1.2〗函数及其表示 【1.2.1】函数的概念
(1)函数的概念
①设的数A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定
f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f
)叫做集合
A到B的一个函数,
记作
f:AB.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设a,b是两个实数,且a
b,满足axb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数
x的集合叫做开区间,记做(a,b);满足axb,或axb的实数x的集合叫做半开半闭区间,分别记做
[a,b),(a,b];满足xa,xa,xb,xb的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a
xb}与区间(a,b),前者a可以大于或等于b,而后者必须
ab.
(3)求函数的定义域时,一般遵循以下原则:
①②③
f(x)是整式时,定义域是全体实数.
f(x)是分式函数时,定义域是使分母不为零的一切实数.
f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤
ytanx中,xk
2
(kZ).
⑥零(负)指数幂的底数不能为零. ⑦若
f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知等式a
f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不
g(x)b解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数
yf(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)xc(y)0,则在
a(y)0时,由于x,y为实数,故必须有b2(y)4a(y)c(y)0,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问
题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图
象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念
①设
A、B是两个集合,如果按照某种对应法则f
,对于集合
A中任何一个元素,在集合B中都有唯一的元素和它
)叫做集合
对应,那么这样的对应(包括集合
A,B以及A到B的对应法则fA到B的映射,记作f:AB.
②给定一个集合
A到集合B的映射,且aA,bB.如果元素a和元素b对应,那么我们把元素b叫做元素a的
象,元素a叫做元素b的原象.
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数
yf[g(x)],令ug(x),若yf(u)为增,ug(x)为增,则yf[g(x)]为增;若
yf(u)为减,ug(x)为减,则yf[g(x)]为增;若yf(u)为增,ug(x)为减,则yf[g(x)]为
减;若
yf(u)为减,ug(x)为增,则yf[g(x)]为减.
a
f(x)x(a0)的图象与性质
x
y
(2)打“√”函数
o x
f(x )分别在()上为增函数,分别在 上为减函数.
(3)最大(小)值定义①一般地,设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有 是函数
f(x)M
;
(2)存在x0I,使得
②一般地,设函数
f(x0)M.那么,我们称Mf(x) 的最大值,记作fmax(x)M.
(2)f(x)m;
yf(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有
存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作fmax(x)m.
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
篇三:
高中数学知识点总结
第一章——集合与简易逻辑 集合——知识点归纳 定义:一组对象的全体形成一个集合表示法:列举法{1,2,3,}、描述法{x|P} 分类:有限集、无限集数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集φ关系:属于∈、不属于、包含于(或)、真包含于、集合相等=运算:交运算A∩B={x|x∈A且x∈B};
并运算A∪B={x|x∈A或x∈B};
补运算CUA={x|xA且x∈U},U为全集
性质:AA; φA; 若AB,BC,则AC;
A∩A=A∪A=A; A∩φ=φ;A∪φ=A;
A∩B=AA∪B=BAB;
A∩CUA=φ; A∪CUA=I;CU( CUA)=A;
CU(AB)=(CUA)∩(CU方法:韦恩示意图, 数轴分析注意:① 区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2};
② AB时,A有两种情况:A=φ与A≠φ③若集合A中有n(nN)个元素,则集合A的所有不同的子集个数为2n,所有真子集的个数是2-1, 所有非空真子集的个数是22 nn
④区分集合中元素的形式:如A{x|yx22x1};B{y|yx22x1};C{(x,y)|yx22x1};D{x|xx22x1};E{(x,y)|yx22x1,xZ,yZ};
yF{(x,y')|yx22x1};G{z|yx22x1,z} x
⑤空集是指不含任何元素的集合{0}、和{}的区别;0与三者间的关系空集是任何集
⑥符号“,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 绝对值不等式——知识点归纳 1 xa与xa(a0)型不等式axbc与axbc(c0)型不等式的解法与解集: 不等式xa(a0)的解集是xaxa; 不等式xa(a0)的解集是xxa,或xa 不等式axbc(c0)的解集为 x|caxbc(c0); 不等式axbc(c0)的解集为 x|axbc,或axbc(c0) 2解一元一次不等式axb(a0)
①a0,xx
bba0,xx ②aa
3韦达定理:
方程axbxc0(a0)的二实根为x1、x2, 2
bxx212a 则b4ac0且cx1x2a
0①两个正根,则需满足x1x20,
xx012
0②两个负根,则需满足x1x20,
xx012
③一正根和一负根,则需满足0 x1x20
4对于一元二次不等式axbxc0或axbxc0a0,设相应的一元二次方程22
ax2bxc0a0的两根为x1、x2且x1x2,b24ac,则不等式的解的各种情况如下表:
方程的根→函数草图→观察得解,对于a0的情况可以化为a0的情况解决
注意:含参数的不等式ax2+bx+c>0恒成立问题含参不等式ax2+bx+c>0的解集是R;其解答分a=0(验证bx+c>0是否恒成立)、a≠0(a<0且△<0)两种情况简易逻辑——知识点归纳命题可以判断真假的语句;
或、且、非;
简单命题 不含逻辑联结词的命题;
复合命题 由简单命题与逻辑联结词构成的命题
三种形式p或q、p且q、非p
真假判断 p或q,同假为假,否则为真;
p且q,同真为真, 否则为假;
非p,真假相反
原命题若p则q;逆命题 若q则p若p则q若q则p; 充要条件条件p成立结论q成立,则称条件p是结论q的充分条件,
结论q成立条件p成立,则称条件p是结论q的必要条件,
条件p成立结论q成立,则称条件p是结论q的充要条件,
第二章——函数 函数定义——知识点归纳 1函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中x叫做自变量x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域2A、值域C和对应法则f数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同3A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应(包括集合A、B,以及集合A到集合B的对应关系f)叫做集合A到集合B的映射,记作f:A→由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集4原象的理解:(1) A中每一个元素都有象;(2)B中每一个元素不一定都有原象,不一定只一个原象;(3)A中每一个元素的象唯一1
(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式(2)列表法:就是列出表格来表示两个变量的函数关系(3)图象法:就是用函数图象表示两个变量之间的关系
第8篇高中物理电学知识点总结
平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线。下面是关于高中抛物线知识点总结的内容,欢迎阅读!
高中数学抛物线知识点总结(一)
抛物线方程
1 设,抛物线的标准方程、类型及其几何性质:
图形 | ||||
焦点 | ||||
准线 | ||||
范围 | ||||
对称轴 | 轴 | 轴 | ||
顶点 | (0,0) | |||
离心率 | ||||
焦点 |
注:①顶点
.
②则焦点半径
;则焦点半径为
.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为
(或
)(为参数).
高中数学抛物线知识点总结(二)
抛物线的性质(见下表):
抛物线的焦点弦的性质:
关于抛物线的几个重要结论:
(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部
P(x0,y0)在抛物线外部
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是
抛物线y2=2px(p>0)的斜率为k的'切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点
的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,
又若切线PA⊥PB,则AB必过抛物线焦点F.
利用抛物线的几何性质解题的方法:
根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.
抛物线中定点问题的解决方法:
在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。
利用焦点弦求值:
利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。