三角形中位线教案一等奖设计
1、三角形中位线教案一等奖设计
一、教学目标
1.掌握中位线的概念和三角形中位线定理
2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”
3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力
4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
5. 通过一题多解,培养学生对数学的兴趣
二、教学设计
画图测量,猜想讨论,启发引导.
三、重点、难点
1.教学重点:三角形中位线的概论与三角形中位线性质.
2.教学难点:三角形中位线定理的证明.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具
六、教学步骤
【复习提问】
1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).
2.说明定理的证明思路.
3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明 ?
分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.
4.什么叫三角形中线?(以上复习用投影仪打出)
【引入新课】
1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.
(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)
2.三角形中位线性质
了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.
如图所示,DE是 的一条中位线,如果过D作 ,交AC于 ,那么根据平行线等分线段定理推论2,得 是AC的中点,可见 与DE重合,所以 .由此得到:三角形中位线平行于第三边.同样,过D作 ,且DE FC,所以DE .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.
三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.
应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的`位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.
由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).
(l)延长DE到F,使 ,连结CF,由 可得AD FC.
(2)延长DE到F,使 ,利用对角线互相平分的四边形是平行四边形,可得AD FC.
(3)过点C作 ,与DE延长线交于F,通过证 可得AD FC.
上面通过三种不同方法得出AD FC,再由 得BD FC,所以四边形DBCF是平行四边形,DF BC,又因DE ,所以DE .
(证明过程略)
例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.
(由学生根据命题,说出已知、求证)
已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.‘
分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.
证明:连结AC.
∴ (三角形中位线定理).
同理,
∴GH EF
∴四边形EFGH是平行四边形.
【小结】
1.三角形中位线及三角形中位线与三角形中线的区别.
2.三角形中位线定理及证明思路.
七、布置作业
教材P188中1(2)、4、7
2、三角形中位线教案一等奖设计
一、 教学目标设计:
运用多媒体辅助教学技术创设良好的学习环境,激发学生的学生积极性,向学生提供充分从事数学活动的机会,引导学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想方法,逐步提高自主建构的能力,培养勇于探索的精神,切实提高课堂效率
1、 认知目标
(1) 知道三角形中位线的概念,明确三角形中位线与中线的不同。
(2) 理解三角形中位线定理,并能运用它进行有关的论证和计算。
(3) 通过对问题的探索及进一步变式,培养学生逆向思维及分解构造
基本图形解决较复杂问题的能力.
2、 能力目标
引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生 观察问题、分析问题和解决问题的能力。
3、 德育目标
对学生进行事物之间相互转化的辩证的观点的教育。
4、 情感目标
利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
二、 本课内容的重点、难点分析:
本节课的内容是三角形中位线定理及其应用,这堂课启到了承上启下的作用
【重点】:三角形中位线定理
【难点】:难点是证明三角形中位线性质定理时辅助线的添法和性质的录活应用.
三、 学情分析:
初二学生已初步具备一定的分析思维能力,但还远未达到成熟阶段。因 而新授时可在教师适当的引导之下,借助一些现代化教育辅助手段,调动学 生思维的积极性,激发学生内在的思维潜力,从而做到教与学的充分和谐。
四、 教学准备:
【策略】
课堂组织策略:组织学生复习旧知识,联系实际,创设问题情景,逐层展开,传授新知识,并精心设计例题、练习、达到巩固知识的目的。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下,通过观察、归纳、抽象、概括等手段,获取知识。
辅助策略:借助“Powerpoint”平台,向学生展示动感几何,化抽象为形象,帮助学生解决学习过程中所遇难题,提高学习效率。
【教法学法】
本节课以“问题情境——建立模型——巩固训练——拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
利用制作的多媒体课件,让学生通过课件进行探究活动,使他们直观、具体、形象地感知知识,进而达到化解难点、突破重点的目的。
教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情景,引导学生自己积极思考探索,经历“观察、发现、归纳”的'过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体。
【主要创意思路】:
1、用实例引入新课,培养学生应用数学的意识;
2、鼓励学生大胆猜想,用观察、测量等方法来突破重点、化解难点;
3、以学生为主体,应用启发式教学,调动学生的积极性;
4、利用变式练习和开放型练习代替传统练习,启迪学生的思维、开阔学生
视野;
5、通过多媒体教学,揭示几何知识间的内在联系及概念本质属性。
五、教学过程
一、联想,提出问题.
1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?
操作:(1)剪一个三角形,记为△ABC
(2)分别取AB,AC中点D,E,连接DE
(3)沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形
BCFD
2、思考:四边形ABCD是平行四边形吗?
3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢?启发学生逆向类比猜想:DE∥BC,DE=1
2BC.
由此引出课题.
二、引入三角形中位线的定义和性质
1.定义三角形的中位线,强调它与三角形的中线的区别.
2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的
一半
三、应用举例
1、 A、B两点被池塘隔开,如何才能知道它们之间的距离呢?
在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么?
2.已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为——cm,面积为——cm2,为原三角形面积的——。
3.已知:△ABC三边长分别为a,b,c,它的三条中位线组成△DEF,△DEF的三条中位线又组成△HPN,则△HPN的周长等于——————,为△ABC周长的——, 面积为△ABC面积的——,
4.如图,AF=FD=DB,FG∥DE∥BC,PE=1.5,则DP= ———,BC= ———
例题,如图.
1,顺次连结四边形四条边的中点,所得的四边形有什么特点?
学生容易发现:四边形ABCD是平行四边形
已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA
的中点,如图4-94.求证:四边形EFGH是平行四边形.
分析:
(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形
EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成
两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位
线”的基本图形.
2,让学生画图观察并思考此题的特殊情况,如图4-95,顺次连结
各种特殊四边形中点得到什么图形?
投影显示:
3,练习:
①顺次连结平行四边形四边中点所得的四边形是______________
②顺次连结等腰梯形四边中点所得的四边形是——————
③顺次连结矩形四边中点所得的四边形是——————
④顺次连结菱形四边中点所得的四边形是——————
⑤顺次连结正方形四边中点所得的四边形是—————
四、师生共同小结:
1.教师提问引起学生思考:
(1)这节课学习了哪些具体内容:
(2)用什么思维方法提出猜想的?
(3)应注意哪些概念之间的区别?
2.在学生回答的基础上,教师投影显示以下与三角形一边中点及线段倍分关系有关的基
本图形(如图4-96).
(1)注意三角形中线与中位线的区别,图4-96(a),(b).
(2)三角线的中位线的判定方法有两种:定义及判定定理,图4-96(b)(c).
(3)证明线段倍分关系的方法常有三种,图4-96(b),(d),(e).
3.添辅助线构造基本图形来使用性质的解题方法.
4.三角形的中位线有这样的性质,那么梯形有中位线吗?它有类似的性质吗?(为下节课作思维上的准备)
五、作业
3、三角形中位线教案一等奖设计
教学过程
一、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的.性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
二、例习题分析
例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。
4、三角形中位线教案一等奖设计
教学目标:
1、理解三角形的内外角平分线定理;
2、会证明三角形的内外角平分线定理;
3、通过对定理的证明,学习几何证明方法和作辅助线的方法;
4、培养逻辑思维能力。
教学重点:
1、几何证明中的证法分析;
2、添加辅助线的方法。
教学难点:
如何添加有用的辅助线。
教学关键:
抓住相似三角形的判定和性质进行教学。
教学方法:
“四段式”教学法,即读、议、讲、练。
一、阅读课本,注意问题
1、复习旧知识,回答下列问题
①在等腰三角形中,怎样从等边得出等角?又怎样从等角得出等边?请画图说明。
②辅助线的作法中,除了过两个点连接一条线段外,最常见的就是过某个已知点作某条已知直线的平行线。平行线有哪些性质?
③怎样判断两个三角形是相似的?相似三角形最基本的性质是什么?
④几何证明中怎样构造有用的相似三角形?
2、阅读课本,弄清楚教材的内容,并注意教材上是怎样讲的。
提示:课本上在这一节讲了三角形的内外角平分线定理,每个定理各讲了一种证明方法。为了叙述定理的需要,课本上还讲了线段的内分点和外分点两个概念。最后用一个例题来说明怎样运用三角形的内外角平分线定理。阅读时要注意课本上有关问题的叙述、分析以及作辅助线的方法。通过适当的联想和猜测,找出一些课本上尚未出现的新的证明方法。
3、注意下列问题:
⑴如图,等腰中,顶角的平分线交底边于,那么,图中出现的相等线段是xxx即xxx。通过比较得到。
⑵如果上面问题中的换成任意三角形,即右图的,平分,交于,那么,是不是还成立?请同学们用刻度尺量一量线段的长度,计算,然后再比较(小的误差忽略不计)。
⑶三角形的内角平分线定理说的是什么意思?课本上是怎样写已知、求证的?
⑷课本上是怎样进行分析、证明的?都用了哪些学过的知识?证明的根据是什么?
⑸课本上证明的过程中是怎样作辅助线的?这样作辅助线的目的是什么?
⑹过、、三点能不能作出有用的辅助线?如果能,辅助线应该怎样作?各能作出几条?
⑺就作出的辅助线,怎样寻找证明的思路和方法?分析的过程中用到了哪些知识?
⑻你能不能类似地叙述三角形的外角平分线定理?
⑼回答练习中的第一题。
⑽总结证明方法和作辅助线的方法。
⑾注意内分点和外分点两个概念及其应用。
4、阅读指导丛书《平面几何》第二册。
⑴注意辅助线中平行线的作法,通过对图、、的观察分析,找出解决问题的证明方法。
⑵丛书利用正弦定理中的面积公式来证明三角形的内角平分线定理,既把有关的知识联系起来、拓展了解题思路,又为我们提供了一种比较简单的解决问题的方法,值得我们借鉴。要注意三角形面积的几种不同的计算方法。
二、互相讨论,解答疑点
1、上面提出的问题,希望大家独立思考、独立完成。根据已有的思路和线索,参照课本上的`方法进行分析。
2、思考中实在是有困难的同学,可以和周围的同学互相讨论,发表看法;也可以请老师帮助、提示或指点。
3、把同学之间讨论的结果,整理成一个完整的证明过程,写出每一步证明的根据。最后,适当地总结一些解题的经验和方法。
三、讲评纠正,整理内容
1、把学生讨论的结果归纳出来,加以补充说明,纠正错误后进行适当的分类总结,点明证题法中的要点。
①证明比例式的依据是平行截割定理的推论,因此,我们作的辅助线都是平行线。
②从上述几种证明方法可以看出,证明的关键在于通过作辅助线把某些线段“移动”到适当的位置,以便根据平行截割定理的推论得出所要的结论。
③辅助平行线的作法,只能是过xxx三点分别作不过、三点的边(线段)的平行线,和另一条边(线段)的延长线相交,构成一个等腰三角形,达到“移动”的目的。
2、整理教学内容
⑴线段的内分点和外分点
(ⅰ)定义:
①在线段上,把线段分成两条线段的点叫做这条线段的内分点。
②在线段的延长线上的点叫做这条线段的外分点。
(ⅱ)举例
点在线段上,把线段分成了和两条线段,所以,点是线段的内分点,线段和叫做点内分线段所得的两条线段。
点在线段的延长线上,和、两个端点构成了、两条线段,所以,点是线段的外分点,线段和叫做点外分线段所得的两条线段。
(ⅲ)条件
①内分点的条件:a)在已知线段上;
b)把已知线段分成另外两条线段。
②外分点a)在已知线段的延长线上;
b)和已知线段的两端点构成另外的两条线段。
(ⅳ)特殊情况
a)线段的中点是不是线段的内分点?内分点是不是线段的中点?
b)线段的黄金分割点是不是线段的内分点?内分点是不是线段的黄金分割点?
c)一条已知线段有几个中点?有几个黄金分割点?有几个内分点?几个外分点?
(ⅰ)定理:三角形的内角平分线分对边所得的两条线段与夹这个角的两边对应成比例。
(ⅱ)已知:中,平分,交于。
求证:xxx。
(ⅲ)简单分析
从结论来考虑,横着看,两个比的前项、在中,两个比的后项、在中。按照相似三角形的性质,只要∽,那么,结论就是成立的。但是,与不是一对相似三角形,所以,不可能用相似三角形来证明。竖着看,有和,事实上,不成一个三角形。若是从“平行线分两条线段所得的线段对应成比例”(平行截割定理的推论)来考虑,显然,图中也没有平行线。因此,要想得到结论,只有把其中的某条线段进行适当的移动,使其构成相似三角形的对应边,或者成为两条直线上被平行线截得的对应线段。这样,我们就确定了辅助线的作法以平行线为主。
例如,把线段绕着它的端点旋转适当的角度到图中的位置(即的延长线)。由于旋转不改变线段的长度,所以,从旋转情况可得。由于平分,所以,连接后可以证明。因此,实际证明时,一般都叙述为“过点作交的延长线于”。不管是哪种说法,其结果都是一样的。类似地,我们还可以把线段绕着它的端点旋转适当的角度到端点落在线段的延长线上,同样也可以证明。
(ⅳ)证法提要
①证法一:如上图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到结论。同样,过点作的平行线和边的延长线相交,也可以证得结论,证明的方法是完全一样的。
②证法二:如右图,过点作交的延长线于,可以得到:a)(为什么?);b)(为什么?)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和的延长线相交,也可以得到结论,证明的方法是完全一样的。
③证法三:如右图,过点作交于,可以得到:a)(为什么?);b)(为什么?);c)。通过等量代换便可以得到所要的结论。同样,过点作的平行线和相交,也可以得到结论,证明的方法是完全一样的。
④证法四:如下页图,过点作交于,根据三角形的面积公式可得:xxx
又根据正弦定理的面积公式有:
通过比较就可以得到:所要的结论。
(ⅰ)定理:三角形的外角平分线外分对边所得的两条线段与夹这个角的两边对应成比例。
(ⅱ)已知:中,是的一个外角,平分,交的延长线于。
求证:xxx。
(ⅲ)简单分析:(类同内角平分线定理的分析方法)
(ⅳ)证法提要;(类同内角平分线定理的分析方法)
四、小结全节,练习巩固
1、小结
⑴两个定理
(ⅰ)三角形的内角平分线定理
(ⅱ)三角形的外角平分线定理
⑵证明方法
分为四大类共七种方法。
2、练习
⑴教材,2、3两题。
⑵补充题:
①画任意一个三角形的某个角的内外角平分线,说明内外角平分线之间的关系,证明你的结论。
②画等腰三角形的外角平分线,说明外角平分线和底边之间的关系,证明你的结论。
3、作业
教材,17、18两题。
5、三角形中位线教案一等奖设计
在本章中约定用A,B,C分别表示△ABC的.三个内角,a, b, c分别表示它们所对的各边长, 为半周长。
1.正弦定理: =2R(R为△ABC外接圆半径)。
推论1:△ABC的面积为S△ABC=
推论2:在△ABC中,有bcsC+ccsB=a.
推论3:在△ABC中,A+B= ,解a满足 ,则a=A.
正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC= ;再证推论2,因为B+C= -A,所以sin(B+C)=sinA,即sinBcsC+csBsinC=sinA,两边同乘以2R得bcsC+ccsB=a;再证推论3,由正弦定理 ,所以 ,即sinasin( -A)=sin( -a)sinA,等价于 [cs( -A+a)-cs( -A-a)]= [cs( -a+A)-cs( -a-A)],等价于cs( -A+a)=cs( -a+A),因为0< -A+a, -a+A< . 所以只有 -A+a= -a+A,所以a=A,得证。
2.余弦定理:a2=b2+c2-2bccsA ,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2= (1)
【证明】 因为c2=AB2=AD2+BD2-2ADBDcs ,
所以c2=AD2+p2-2ADpcs ①
同理b2=AD2+q2-2ADqcs , ②
因为 ADB+ ADC= ,
所以cs ADB+cs ADC=0,
所以q×①+p×②得
qc2+pb2=(p+q)AD2+pq(p+q),即AD2=
注:在(1)式中,若p=q,则为中线长公式
(2)海伦公式:因为 b2c2sin2A= b2c2 (1-cs2A)= b2c2 [(b+c) -a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c).
这里
所以S△ABC=
6、《三角形的中位线定理》教学反思
本节课我通过直接介绍三角形的中位线的定义,然后让学生在手中三角形上画出来,画出后又去发现图形中隐藏的中位线定理,学生经过实际的操作,体会到了学数学和做数学的乐趣,在一定程度上提高了学生学习数学的兴趣,培养了学生的合作能力,并在一定程度上让学生在过程中感受知识的形成。使学生对知识的理解更到位,更具理解性。
在三角形的中位线定理的证明方法上,我把重点放在了让学生体会思考证明思路上,联系到平行四边形的对边平行且相等,我们怎么添加辅助线,构造什么图形,有什么隐含的条件,这些条件在证明时如何使用,如何联系,把这些问题交给学生自己思考,交流,提高了学生自主学习的能力。教师在这一过程中只起到引导和点拨的作用。
在这两点上,是我认为比较成功的.地方。本节课也存在一些不足,主要体现在以下几个方面:
1、个别学生在回答问题的时候,声音比较小,离他远的同学听不到。
2、没有在最大程度上照顾到全体同学,少数同学对新知识的掌握还不够牢固。
3、小组讨论的时候有的学生参与不够,没有使每一个学生的脑子动起来。
4、在时间的掌控上欠佳,准备的练习题有一题没讲。
在以后的教学中我会改正以上的不足,争取使每一个学生都会爱上数学、享受数学之美。
7、八年级数学下册《三角形中位线》教学反思
在《三角形中位线》的教学中,我设计的教学目标有以下三点:1.了解三角形的中位线的概念;2.了解三角形的中位线的性质;3.探索三角形的中位线的性质的一些简单应用。本节的教学重点和难点有以下两点:1.本节教学的重点是三角形的中位线定理;2.三角形的中位线定理的.证明有较高的难度,是本节教学的难点。
在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘边上的AB两点之间的宽度?办法是只要在池塘外取一点C,取CA的中点D,在取CB的中点E,此时只需求DE的长度,就可知AB的长度。这是为什么呢?此时教材体现的是学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,
(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?
(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用是非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。
8、《三角形的高,中线与角平分线》教学反思
本节课我所讲的是七年级数学第七章《三角形》第2课时,即三角形的高线、中线、角平分线。
本节课的教学目标是:
(一)掌握的知识与技能:
1、经历折纸、画图等操作过程认识三角形的高、中线、角平分线,结合图形,会用几何语言表述。
2、会用工具准确地画出三角形的高、中线与角平分线。
(二)经历的教学思考:
经历折纸、画图、观察、思考、交流等活动,发展空间观念和表达能力
(三)培养的情感态度和价值观:
通过数学活动,让学生体验和理解三角形中的特殊线段,结合图形认识三角形的.高、中线、角平分线所揭示的数量关系,学会发现问题,解决问题。
教学重难点是:重点:
(1)了解三角形的高、中线、角平分线的概念,会用工具准确画出三角形高、中线、角平分线。
(2)了解三角形的三条高,三条中线与三条角平分线分别交于一点。
2、难点:
(1)三角形平分线与角平分线的区别,三角形的高与垂线的区别。
(2)钝角三角形高的画法。
(3)不同的三角形三条高的位置关系。
本节课中,我首先以白雪公主给七个小矮人分煎饼引入课题,激发学生的学习兴趣。学生们都要帮助白雪公主所以带着任务自学完成导学案。自学完成后由小组合作讨论,教师适时点拨。在发现学生们自学中的问题后,我在实物投影中展示了学生的问题所在,由学生走上前来指出错误的地方并且改正,体现了生生互动,也激发了学生的积极性。在整个教学环节中,不断强调重点和难点,让学生在实物投影下作出三角形的高线,互相改正,加深了学生的印象。本节课我用图形展示了钝角三角形的高相交在三角形的外部,加深了印象
本节课中三角形中线和角平分线都很容易掌握,但三角形高线的画法中,钝角三角形的高是学生掌握起来非常困难的一个知识点。部分学生已经形成思维定式,认为高线应该始终在三角形的内部,所以画出的高无法构成垂直。这一点还有待课后多加强调,多加练习
9、八年级数学上册《三角形的高、中线、角平分线》的教学反思
本节课主要介绍了三角形的三种非常重要的线段,学生已经学过过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识,是学习本节新知识的基础,所以我在复习提问环节不但要求学生说出上述概念的文字语言,还要求学生说出符号语言,为后面三角形的高、中线与角平分线的几何语言做好铺垫。同时我在创设问题情境时我觉得很成功,激起了学生的浓厚兴趣,同时在后面又作为例题进行讲解,既解决了问题情境中提出的问题,又填补了例题的空缺,同时应用三角形的高、 中线知识进行解决,得出三角形中线把三角形分成面积相等的两个三角形的结论。
本节重点是三角形的三种重要线段,难点是对三角形的.角平分线、中线、高的准确理解、作图与正确运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。
对于每一种线段的获得我都设计了动手操作,尤其是钝角三角形的高的画法,占去了大量的时间,因为学生在作图上确实存在很大问题。但最终学生还是很好的画出了钝角三角形的三条高,并得出了相关结论。
虽然在教学中,课程基本内容讲解完毕,也达到了基本的教学目标,但由于课堂容量大,而且有难点不好突破,所以在时间控制上还存在一定的问题,有些前松后紧了,前边如果能挤出3到5分钟,这节课将很顺利的完成。
10、《等腰三角形和等边三角形》教学反思
本节课的重点是让学生在操作中发现等腰三角形和等边三角形的特征。我没有呈现几个不同类型的三角形,让学生通过测量边的长度从而发现他们的共同点,我在让学生观察常见的一副三角板,说说每个角的度数,然后再找出比较特殊的三角行,从而引出等腰三角形的。然后利用折纸这个活动,来进一步的体会等腰三角形的特点,先是引导学生看书上的图示,理解做的步骤,然后让学生自己动手去做,学生做得很好,接着我有让学生在探究本上试着画一个等腰三角形,使学生在画图的过程中进一理解特征。对于等边三角形的教学,基本上也就如此,但是,学生似乎不太理解折纸的方法,因此,我就作了示范,学生才勉强制作出了等边三角形。由于在这个部分,我留给学生的时间比较多,后来连书本上的“想想做做”都来不及解决,因此,我决定明天再增加一节练习课,做一个专项训练,看看学生对知识的综合运用情况。
今天教学了等腰三角形和等边三角形,其实学生通过动手操作对等腰三角形和等边三角形的概念还是很容易掌握的,关键在于灵活运用,所以,在练习的时候,我采取了一题多变的'形式。在“想想做做”中有这样一道题目:一根18厘米长的线,可以围成边长几厘米的等边三角形?这个问题很简单,学生很轻易就解决了,然后我又把题目改成:用一根18厘米长的线围成一个等腰三角形,腰是7厘米,底是多少厘米?用一根18厘米长的线围成一个等腰三角形,底是4厘米,腰是多少厘米?通过这两个问题的练习,学生对等腰三角形的性质有了更深的理解,在做《补充习题》的时候正确率高了不少。所以,书上的练习题还有很多值得我们挖掘的地方。