数学与交通相遇教案一等奖教学设计一等奖
1、数学与交通相遇教案一等奖教学设计一等奖
作为一位无私奉献的人民教师,很有必要精心设计一份教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。怎样写教学设计才更能起到其作用呢?以下是小编精心整理的数学与交通相遇教学设计范文,仅供参考,希望能够帮助到大家。
教学目标:
1、会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,培养学生的方程意识。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息、建立模型的能力。
教学重点、难点:
1、引导学生找出有关的数学信息,说说自己的思考方法。
2、让学生独立分析数量关系,并尝试用方程解决问题。
教学过程:
(一)创设情境
出示情境图送材料
1、让学生观察情境图,交流获得的信息,理解题意(相遇)。
教师出示题目和线路图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园到天桥的路程是50千米。王阿姨的'面包车的速度是40千米/时,张叔叔的小轿车的速度是60千米/时。
请学生读一遍题目。
①遗址公园距天桥50千米。
②小轿车的速度60千米/时,面包车的速度40千米/时。
③两人同时出发。
④两人在哪个地方相遇?
2、全班交流相遇意义,引导出路程、时间、速度三者之间的关系。
速度时间=路程。
师:我们以前学习的都是一个人或一个物体运动的情况。如果是两个人或两个物体同时相对运动,将会出现什么情况呢?这就是我们今天要学习的相遇问题。(板书副课题:相遇)
(二)探究新知
活动一:估计两人在哪个地方相遇?
1、小组讨论。
2、汇报交流。
①要知道两人在哪个地方相遇?首先得知道两车跑的路程谁多谁少?
②小轿车的速度比面包车快一些,相同时间小轿车跑的路程就多,从线段图可以估计他们的相遇地点距离遗址公园近,所以,估计相遇地点在李村附近。
活动二:思考并解决出发后几时相遇?问题:
1、引导学生把抽象的问题用线段直观的表示出来:
面包车行驶小轿车行驶
的路程的路程
遗址公园天桥
2、各小组讨论如何计算出相遇用的时间?
3、汇报交流。
①路程速度=时间,所以,先算出两车每小时的速度和,就可以用路程速度求出相遇所用的时间:
60+40=100(千米/时)50100=0.5(时)
所以,出发后0.5时相遇。
②我们小组可以列综合算式:50(60+40)=0.5(时)比他们小组的方法简单。
③我们小组是用学过的方程来解决问题的:
我们先假设经过x小时两车相遇,那么面包车行使40x千米,小轿车行使60x千米。60x+40x=50
100x=50
x=0.5
活动三:让学生体会用用哪种方法解决问题比较方便。
①算式方法简单,但思考难度大。
②方程方法是顺向思维,很容易,所以简单。
小结:有些问题用方程来解决更容易思考,在以后的学习中可以用方程来解决问题。
活动四:思考相遇地点距遗址公园多远?
1、各小组讨论。
2、汇报交流。
①相遇地点距遗址公园多远?实际就是求出面包车行使的路程,就是:400.5=20(千米)相遇地点距遗址公园20千米。
②也可以算出小轿车行使的路程:600.5=30(千米)
总路程-小轿车行使的路程:50-30=20(千米)
小结:同学们能从多个角度看出问题的实质,用多种方法解决问题,值得表扬,希望今后再接再励。
(三)课堂检测
1、解方程:9x-4x=6.52y+y=105
2、甲乙两个工程队合作修建一条9千米的公路,两队同时从两端开始修建。甲队每天修80米,乙队每天修70米。多少天完成任务?两队各修建了多少千米?
3、练一练:第4、5题
(四)课堂总结
这节课你有哪些收获?
2、数学与交通相遇教案一等奖教学设计一等奖
作为一名辛苦耕耘的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学质量,收到预期的教学效果。我们应该怎么写教学设计呢?下面是小编为大家收集的数学与交通相遇教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
教学目标:
1.会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,培养学生的方程意识。
2.经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息、建立模型的能力。
教学重点、难点:
1、引导学生找出有关的数学信息,说说自己的思考方法。
2、让学生独立分析数量关系,并尝试用方程解决问题。
教学过程:
(一)创设情境
出示情境图送材料
1、让学生观察情境图,交流获得的信息,理解题意(相遇)
教师出示题目和线路图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园到天桥的路程是50千米。王阿姨的面包车的速度是40千米/时,张叔叔的小轿车的速度是60千米/时。
请学生读一遍题目。
①遗址公园距天桥50千米。
②小轿车的`速度60千米/时,面包车的速度40千米/时。
③两人同时出发。
④两人在哪个地方相遇?
2、全班交流相遇意义,引导出路程、时间、速度三者之间的关系。
速度时间=路程
师:我们以前学习的都是一个人或一个物体运动的情况。如果是两个人或两个物体同时相对运动,将会出现什么情况呢?这就是我们今天要学习的相遇问题。(板书副课题:相遇)
(二)探究新知
活动一:估计两人在哪个地方相遇?
1、小组讨论。
2、汇报交流。
①要知道两人在哪个地方相遇?首先得知道两车跑的路程谁多谁少?
②小轿车的速度比面包车快一些,相同时间小轿车跑的路程就多,从线段图可以估计他们的相遇地点距离遗址公园近,所以,估计相遇地点在李村附近。
活动二:思考并解决出发后几时相遇?问题
1、引导学生把抽象的问题用线段直观的表示出来:
面包车行驶小轿车行驶
的路程的路程
遗址公园天桥
2、各小组讨论如何计算出相遇用的时间?
3、汇报交流。
①路程速度=时间,所以,先算出两车每小时的速度和,就可以用路程速度求出相遇所用的时间:
60+40=100(千米/时)50100=0.5(时)
所以,出发后0.5时相遇。
②我们小组可以列综合算式:50(60+40)=0.5(时)比他们小组的方法简单。
③我们小组是用学过的方程来解决问题的:
我们先假设经过x小时两车相遇,那么面包车行使40x千米,小轿车行使60x千米。
60x+40x=50
100x=50
x=0.5
④
活动三:让学生体会用用哪种方法解决问题比较方便。
①算式方法简单,但思考难度大。
②方程方法是顺向思维,很容易,所以简单。
小结:有些问题用方程来解决更容易思考,在以后的学习中可以用方程来解决问题。
活动四:思考相遇地点距遗址公园多远?
1、各小组讨论
2、汇报交流
①相遇地点距遗址公园多远?实际就是求出面包车行使的路程,就是:400.5=20(千米)相遇地点距遗址公园20千米。
②也可以算出小轿车行使的路程:600.5=30(千米)
总路程-小轿车行使的路程:50-30=20(千米)
小结:同学们能从多个角度看出问题的实质,用多种方法解决问题,值得表扬,希望今后再接再励。
(三)课堂检测
1、解方程:9x—4x=6.52y+y=105
2、甲乙两个工程队合作修建一条9千米的公路,两队同时从两端开始修建。甲队每天修80米,乙队每天修70米。多少天完成任务?两队各修建了多少千米?
3、练一练:第4、5题
(四)课堂总结
这节课你有哪些收获?
3、数学与交通相遇教案一等奖教学设计一等奖
数学与交通相遇教案教学设计
教学目标:
1.会分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,培养学生的方程意识。
2.经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息、建立模型的能力。
教学重点、难点:
1、引导学生找出有关的数学信息,说说自己的思考方法。
2、让学生独立分析数量关系,并尝试用方程解决问题。
教学过程:
(一)创设情境
出示情境图送材料
1、让学生观察情境图,交流获得的信息,理解题意(相遇)
教师出示题目和线路图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园到天桥的路程是50千米。王阿姨的面包车的速度是40千米/时,张叔叔的小轿车的速度是60千米/时。
请学生读一遍题目。
①遗址公园距天桥50千米。
②小轿车的速度60千米/时,面包车的'速度40千米/时。
③两人同时出发。
④两人在哪个地方相遇?
2、全班交流相遇意义,引导出路程、时间、速度三者之间的关系。
速度时间=路程
师:我们以前学习的都是一个人或一个物体运动的情况。如果是两个人或两个物体同时相对运动,将会出现什么情况呢?这就是我们今天要学习的相遇问题。(板书副课题:相遇)
(二)探究新知
活动一:估计两人在哪个地方相遇?
1、小组讨论。
2、汇报交流。
①要知道两人在哪个地方相遇?首先得知道两车跑的路程谁多谁少?
②小轿车的速度比面包车快一些,相同时间小轿车跑的路程就多,从线段图可以估计他们的相遇地点距离遗址公园近,所以,估计相遇地点在李村附近。
活动二:思考并解决出发后几时相遇?问题
1、引导学生把抽象的问题用线段直观的表示出来:
面包车行驶小轿车行驶
的路程的路程
遗址公园天桥
2、各小组讨论如何计算出相遇用的时间?
3、汇报交流。
◆您现在正在阅读的《数学与交通――相遇》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《数学与交通――相遇》教学设计①路程速度=时间,所以,先算出两车每小时的速度和,就可以用路程速度求出相遇所用的时间:
60+40=100(千米/时)50100=0.5(时)
所以,出发后0.5时相遇。
②我们小组可以列综合算式:50(60+40)=0.5(时)比他们小组的方法简单。
③我们小组是用学过的方程来解决问题的:
我们先假设经过x小时两车相遇,那么面包车行使40x千米,小轿车行使60x千米。60x+40x=50
100x=50
x=0.5
④
活动三:让学生体会用用哪种方法解决问题比较方便。
①算式方法简单,但思考难度大。
②方程方法是顺向思维,很容易,所以简单。
小结:有些问题用方程来解决更容易思考,在以后的学习中可以用方程来解决问题。
活动四:思考相遇地点距遗址公园多远?
1、各小组讨论
2、汇报交流
①相遇地点距遗址公园多远?实际就是求出面包车行使的路程,就是:400.5=20(千米)相遇地点距遗址公园20千米。
②也可以算出小轿车行使的路程:600.5=30(千米)
总路程-小轿车行使的路程:50-30=20(千米)
③
小结:同学们能从多个角度看出问题的实质,用多种方法解决问题,值得表扬,希望今后再接再励。
(三)课堂检测
1、解方程:9x-4x=6.52y+y=105
2、甲乙两个工程队合作修建一条9千米的公路,两队同时从两端开始修建。甲队每天修80米,乙队每天修70米。多少天完成任务?两队各修建了多少千米?
3、练一练:第4、5题
(四)课堂总结
这节课你有哪些收获?
4、数学与交通相遇教案一等奖教学设计一等奖
教学目标
1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由.
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?
教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?
(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)
教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”
板书课题:相遇问题
(三)出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.
根据已知条件填写下表
走的时间
张华走的.路程
李诚走的路程70米
两人所走路程的和
现在两人的距离
1分
60米
70米
2分
3分
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.
请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4 方法二:(65+70)×4
=260+280 =135×4
=540(米) =540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练习
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?
讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?
板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2
方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动……)
今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
5、数学与交通相遇教案一等奖教学设计一等奖
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养学生大胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270(50+40).
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的'两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣.
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数.
例如:观众想的是59,他按规定计算出
59167+2500=12353
表演者根据报的得数计算
533=159
于是就知道观众想的是59.
活动过程
1.教师进行表演
2.学生探讨其中的奥妙
3.学生自己设计这样的几个游戏.
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数.
六、板书设计
6、相遇数学教学反思
《相遇》教学反思这节课的主要内容是相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。教学之后产生了一些想法:
1、情境的创设能吸引学生,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题---尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的'体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了直观的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。
但是,由于本人的教学水平不高,本课时的教学也存在一些遗憾。
1、比如在如何引导学生发现解决相遇时间的方案中,学生能很好地利用等量关系式列方程,但在列方程时,部分学生没有很好地将方程的格式写好,特别是“解和设”,我在评比时虽然注意到这个问题,但没有重点进行评讲,结果导致后边的练习也出现了这种现象,学生由于模仿性强,所以教师更应该小心谨慎,画线段图也是一样。
2、另外本节课的教学,由于时间掌握得不够好,在学生板书例题的解法后,我没有再展开来讲,介绍别的解法,(40+60)X=40,例如算术法,40÷(40+60)等,没有让学生更好地发散思维,没有让学生更好地理解顺思维与逆思维解法的区别。
7、相遇问题的五年级数学教学反思
教学反思:
这节课的主要内容是相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。我个人认为本节课教学设计和组织上很好的体现了新课程标准理念。
具体体现在:
1、情境的创设贴近生活,从生活实际入手,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手―抽象成数学问题---尝试解决方案―应用生成的知识解决更多问题“的思路展开教学。有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的'探究过程,从而获得到成功的体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了多媒体的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。
3、在教学过程中,还能注意实施差异教学。学生的水平参差不一,有的解题速度比较快,有的比较慢,甚至有的对所学的内容存在困难,因此我通过在完成练习时,要求早完成的学生要与旁边的同学实行一帮一的互相检查以及辅导,让学生在互助合作的良好氛围中学习,同时在实施评价、反馈时,教师注意捕捉、发现学生的思维火花,及时鼓励、肯定,极大的调动学生学习积极性,形成平等和谐的学习氛围。
8、五年级数学上册《相遇问题》教学反思
数学课程标准指出“学生的数学内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流数学活动”。基于这样的要求,在组织课堂教学时,如何创设教学情境,激发学生的求知欲望,提高教学质量此文来自优秀斐斐,课件园已越来越受到广大教师的重视。我认为数学课上的情境创设不仅仅是为了活跃课堂气氛而设置的,更不是为所谓的“体现课程标准”而设置,其根本目的是为学生学习数学服务,要让学生用数学的眼光去关注情境,由此发现数学问题,解决数学问题,提高数学能力。
行程问题是数学教学中的'一个典型问题,“相向而行”、“反向而行”、“同向而行”、“同时出发”、“相遇”等数学术语,以及两地的路程与物体的关系,对于初学的学生来说在理解上有一定的困难。为此,在教学时,我设计这样的教学情境,首先,请两名学生分别在A、B两端,同时出发,迎面走来,在表演时,叫他们站在相遇点,并组织学生讨论在刚才的情境中,蕴含了那些数学问题,怎样求AB两地间的路程,使学生明白了运动方向(相向而行),两人同时出发(在相遇时两人用的时间相等),求AB间的路程实际上就是求两人行走路程和其次,让相遇的学生继续往前走分别到A、B两地,帮助学生理解现在的运动方向是反向而行,而求AB两地的路程还是两人行走的路程和。有了这样的认识,学生在解决这类基本题时,已不觉得有任何难度。同样,在数学变式题时,我也充分利用教学情境,让学生明白不同速度的两个物体同向而行后,会发生的数学问题,即经过一段时间,两物相距的路程就是它们所行的路程差。当两个物体沿封闭图形周长。通过教学。让学生在生活情境中理解数学、应用数学,使学生知道了数学知识的来龙去脉,把“生活化”与“数学化”较好地结合起来,提高了学习效率。
当然,在创设教学情境时,我们要力求避免“生活味”过浓,不能把“生活化”作为数学课的单一求甚至是唯一求,因为数学问题并不完全等同于生活问题,数学来源于生活,又高于生活,有其独特的抽象性和逻辑性。只有把“生活化”与“数学化”有机地结合起来,合理地选择数学素材,创设现实的、有意义的和富有挑战性的教学情境,才能真正提高教学效率,培养学生的创新精神的实践能力。