教案

八年级数学教学教案一等奖:线段的垂直平分线

2023-06-25 19:22:09

  八年级数学教学教案一等奖:线段的垂直平分线

八年级数学教学教案一等奖:线段的垂直平分线

1、八年级数学教学教案一等奖:线段的垂直平分线

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

  本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

  2、 教法建议

  本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

  (2)采用“类比”的学习方法,获取逆定理

  线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

  (3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

2、八年级数学教学教案一等奖:线段的垂直平分线

  教学任务分析:

  小学数学二年级上册第99页的“数学广角”其主要的教学内容是简单的排列与组合。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。传统教材中没有单独编排这部分内容,有关这方面的知识是新编实验教材新增设的内容之一。这节课的教学任务就是通过学生日常生活中的最简单的事例,让学生运用操作、实验、猜测等直观手段解决这些问题,向学生渗透有关排列与组合的数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。当然在“摆数”、“握手”等活动中,通过学生的合作交流、互相沟通,也促进知识的互补和互联,培养学生的合作意识。

  学生分析:

  简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,不少学生通过平时的奥数辅导都能做到不重复、不遗漏地排列。再如组合题中用钱买物品等,学生基本上都能准确地回答出结果。针对这些实际情况,在设计本节课时,教学的重点应该偏重于让学生说一说有序排列、巧妙组合的理由,体会到有顺序、全面思考问题的好处。并在设计“摆数”、“握手”这些活动时难度再稍微提升些,尽量做到让每个学生都能有事可做。同时,根据学生的年龄特点在设计教案时也要做到设计学生感兴趣的环节,灵活处理教材。

  教学目标:

  1.使学生通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。

  2.培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。

  3.引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。

  4.培养学生的合作意识和人际交往能力。

  教学重点:

  自主探究,掌握有序排列、巧妙组合的.方法,并用所学知识解决实际生活的问题。

  教学难点:

  怎样排列可以不重复、不遗漏。

  教学准备:

  三只小动物的头像、两顶小雨伞图片、上锁的大门图片、纸条、实物投影仪等。

  教学过程:

  一、以故事形式引入新课

  师:同学们,今天老师为大家带来了3只可爱的小动物,你们看它们是谁呀?(边说边贴出动物头像:小刺猬、小鸭、小鸡)小刺猬、小鸭和小鸡三个好朋友今天准备到企鹅博士家去做客呢,可是刚走了一半路,突然下起雨来,它们三个只有小鸭和小鸡带了伞,小刺猬没带伞,怎么办呢?

  ▲(学生可能出现的答案有:①小鸡和小刺猬拼一把伞,小鸭自己打一把伞。②小鸭和小刺猬拼一把伞,小鸡自己打一把伞。③小鸭和小鸡拼一把伞,小刺猬自己打一把伞。)

  ▲当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。

  师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它们却选择了第③种方法,你们知道这是为什么吗?原来呀,当它们开始用前面两种方法时,可没走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。

  (教学设计意图:不拘泥于教材,创设学生感兴趣的故事引入新课,引起学生的共鸣。同时又渗透了简单组合及根据实际情况合理选择方法的数学思想,起到了一举两得的作用。)

  二、用开密码锁的方法进行数的排列活动

  师:三只小动物到了企鹅博士家,却发现大门紧闭,门上还挂着一把锁(边说边在黑板上贴出图片)咦,锁上还有一张纸条呢,让我看看纸条上写着什么呢?(教师读纸条上写的内容:欢迎你们的到来,为了考考你们的智慧,请你们先想办法把这把密码锁打开,锁的密码提示是:请用数字1、2、3摆出所有的两位数,密码就是这些数从小到大排列中的第4个。──企鹅博士留。)

  师:三只小动物都犯傻了,怎么办呢?同学们能不能给他们帮帮忙?

  (生略)

  师:那么我们就先每人拿出数字卡片,自己摆一摆,边摆边记,完成后,再小组内交流汇总,组长把整个小组摆出的数全写出来,当然重复的数字不用再写,然后全组同学一起把这些两位数从小到大排列起来,找到密码。

  ▲ 学生先自己摆、记,然后小组汇总、排列、交流,教师进行巡视并作适当指导。

  (教学设计意图:以帮小动物开密码锁的方法来进行数的排列教学,使学生在充满兴趣的情感中不知不觉地进入了摆数活动,让学生在体验中感受,在活动操作中成功,在交流中找到方法,在学习中应用。这里先让学生独立思考,调动学生自主学习的积极性,再小组合作,让学生在宽松民主的气氛中,参与学习过程。同时从学生已有的知识基础出发,适当增加了难度,让这个密码出现在所有的两位数从小到大排列的第4个,这也是做到了“下要保底、上不封顶”的设计意图。)

  师:你们找到密码了吗?是多少?你们是怎么找到的呢?

  ▲请几个小组的学生汇报找密码的过程。(略)

  师:那么刚才你们摆两位数时,你摆出了几个呢?请用手势表示一下。

  ▲学生举手后,问没摆全的学生是怎么摆的,问全摆出的学生又是怎么摆的,学生出现的情况可能有:有把1、2组成12,然后再交换位置变成21;1、3组成13,交换位置后是31;2、3组成23,交换位置后是32。或者是随便摆一个看一个的。或者是这样摆12、13、23、21、31、32等。对这些摆法可让学生去比较一下,得出第一种方法有序地去摆不会重复也不会遗漏。

  ▲让刚才不是用第一种方法去摆的学生按这种方法再重新摆一摆,感觉一下是不是比刚才方便多了。

  师:同学们都摆得很好,都动了脑筋,要想摆得快又不漏掉,我们应该选择一定的顺序去摆。

  (教学设计意图:既然是数学活动课就该让学生充分地摆,充分地说,以“摆”来帮助思,以“说”来表达思,在“摆”中发现问题,在“说”中交流问题,解决问题。)

  (三)模拟小动物之间的握手来解决组合问题。

  师:通过大家的帮忙,企鹅博士家的密码锁被打开了,小动物们可高兴了,它们激动地互相握起手来,小刺猬边握手边在想:“我们三个互相握一次手,一共握了几次手呢?”(教师边说边在小刺猬的头上打个问号。)

  ▲ 学生猜好后,教师指出可以以四人小组为单位,三人模拟小动物握手,一人数握手的次数,找出答案。最后通过模拟得出:3人一共握了3次手。

  师:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?(学生交流后得出:两个数字可以交换组成2个两位数,而两个人握手不能交换只能算一次。)

  (教学设计意图:模拟小动物握手,让学生在实践操作中自己找出答案,培养学生的实践意识和应用意识,同时使学生感受到学习的乐趣。最后通过比较,找出区别,在区别中强化知识,此种学习方式充分体现了以学生为主体的思想。)

  (四)通过不同层次的练习,使知识得到巩固。

  师:同学们说得都非常好。今天,我们不仅帮3只小动物解决了不少的问题,还学到了许多的数学知识,大家高兴吗?

  师:那现在我们就带着这份兴奋的心情,来做几道题吧!

  1.(出示实物投影)第101页第1题,问有几种不同的穿法?

  (练习设计意图:通过“搭配衣服”这个练习,不但使学生明白数学与生活的密切关系,而且巩固了所学知识。)

  2.(出示实物投影)一张5元,4张2元的纸币及3个1元的硬币,还有一辆标价为8元的跑车。

  (1)买1辆玩具跑车够吗?买2辆够吗?

  (2)如果买1辆,可以怎样付钱?

  (练习设计意图:这个练习,把书中的“做一做”中的买“5角钱的拼音本”改为买“8元的玩具跑车”,在巩固简单组合的基础上,还加入了估算的练习,提高了这道练习题的层次,训练学生多元化、多角度综合地考虑和解决问题。)

  3.打靶游戏。

  规则:每一列必须从下往上打,但打哪一列可任意选择。

  (1)像图1这样的靶,打的顺序一共有多少种?

  举例:①→③→④→②

  (2)像图2这样的靶,打的顺序一共有多少种?

  (练习设计意图:这个练习如时间不够可以让学生在课外完成。这个设计是让学有余力的学生能结合今天所学的知识,进行更高层次的运用,让优生能“吃得饱”。同时,让学生对今天所学的知识有所回味,起到课后延伸与发展的作用。)

  (五)小结:

  师:这节课你学得高兴吗?为什么?

3、八年级数学教学教案一等奖:线段的垂直平分线

  教学目标:

  1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

  2、让学生切实体会到数学在体育等领域的广泛应用。

  教学重点:

  如何确定每一条跑道的起跑点。

  教学难点:

  确定每一条跑道的起跑点。

  教学过程:

  一、 提出研究问题。(出示运动场运动员图片)

  1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)

  2、各条跑道的起跑线应该向差多少米?

  二、 收集数据

  1、看课本75页了解400m跑道的结果以及各部分的数据。

  2、出示图片、投影片让学生明确数据是通过测量获取的。

  直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)

  三、 分析数据

  学生对于获取的'数据进行整理,通过讨论明确一下信息

  1、两个半圆形跑道合在一起就是一个圆。

  2、各条跑道直道长度相同。

  3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

  四、 得出结论

  1、看书P76页最后一图

  2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)

  3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)

  五、 课外延伸

  200m跑道如何确定起跑线?

4、八年级数学教学教案一等奖:线段的垂直平分线

  一、课题

  长方体和正方体的认识

  二、教学目标

  (一)掌握长方体和正方体的特征,认识它们之间的关系。

  (二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点

  (一)长方体和正方体的特征。

  (二)认识立体图形,发展学生初步的空间观念。 教具准备

  三、教具

  长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。

  四、教学过程

  (一)复习准备

  同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)

  不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)

  今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)

  (二)新授

  1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)

  我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?

  现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请。。。。。。

  (学生说)

  3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的面是哪一个部分?

  (请一个学生上台来说)

  拿出你们的.长方体和正方体摸摸看。 谁来指指长方体的棱是哪一个部分? (请一个学生上台来说)

  拿出你们的长方体和正方体摸摸看。

  那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)

  数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点

  今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)

  现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。

5、八年级数学教学教案一等奖:线段的垂直平分线

  教学目标:

  1、知识目标:经历探索乘数末尾有0的乘法简便算法的过程,理解和掌握计算方法,并能正确计算。

  2、能力目标:在具体情境中合理地运用口算、笔算和估算,体会解决问题策略的多样性。

  3、情感目标:在与他人的讨论交流中,培养主动探索、合作交流的良好习惯,树立学习的信心。

  教学重点:探索乘数末尾有0的乘法的简便的计算方法,并能正确笔算。

  教学过程:

  一、谈话导入:

  1、在乘法这一单元里,我们已经学习了

  (1)口算。哪类题目可口算?(两位数乘整十数)

  (2)笔算。哪类题目要笔算(两位数乘两位数)这里的两位数我们指的是一般的情况,不包括整十数

  (3)估算。估算的时候我们一般把两位数看成是很接近它的整十数来估算的。估算允许存在一定的误差。

  2、关于乘法,我们这一课要学什么,有谁知道吗?

  板书课题:末尾有0的乘法

  二、学习探究:

  1、其实末尾有0的乘法也就是我们前面口算中出现的那类题,所不同的是,以前是口算,今天要笔算。

  (1)、谈话:今天我们仍然到奶牛场去参观,看看奶牛场一天能生产多少牛奶。(出示主题图)

  (2)、问:从图中你能知道些什么?能提出什么问题?怎样列式?

  (3)、在交流中提出问题:今天挤的牛奶有多少千克?

  让学生说出算式后板书:2530=

  2、学生用已有的笔算知识列出竖式计算

  交流:板书: 3 0 或 2 5

  2 5 3 0

  1 5 0 0 0

  6 0 7 5

  7 5 0 7 5 0

  观察两个竖式,说说你有什么想法?

  3、注意看老师的竖式和刚才的有什么不同,板书:

  2 5

  3 0

  7 5 0

  问:这个竖式和刚才的竖式有什么不同的地方?(0没有和什么数位对齐)

  猜:为什么要这样写呢?(在算的时候先不要考虑它)

  遮去0,现在的竖式变成几乘几?(25乘3)

  一起来算一算:75。

  好了吗?(没有,还要添上0,得数是750)

  把这个竖式和刚才的竖式比一比,你更喜欢哪个竖式?为什么?

  说说这种简便竖式在写的时候要注意什么?

  指出:它其实和口算差不多,先不看0,最后添0。

  4、即时训练。

  想想做做1。

  独立计算,指名板演,学生计算时,注意提醒学生积的末尾0的处理。

  说说做这样的两位数乘整十数怎样算简便?

  5、学这个简便写法有什么用呢?

  大家来看这道题:3804500

  这是一道三位数乘四位数,你能不能用新学的办法来计算?

  随学生回答并板书,结合板书指出:先不看0,所以我们就可以把它看成

  是两位数乘两位数,这样就会了,不过最后还要加上3个0。

  看来学了乘数末尾有0的简便算法我们可以用它来解决一些更难的计算。

  三、巩固练习:

  1、想想做做3

  问:题目要的是什么?你怎样比较第一组中的`两道题?你能想到什么?

  在小组里说说怎样比较第二组、第三组的两道题。

  2、想想做做4

  看图说说图意,再列式计算,说说是怎样列式的,又该怎样进行估算。提

  醒学生用约等号连接估算结果。

  3、想想做做5

  出示场景图,让学生说说收集到哪些信息,独立计算后,再指名说说算

  式,如果学生独立计算有困难,教师重点提问:20人正好租4条船能推

  算出什么?

  4、想想做做6

  学生独立阅读题目后,先观察平面图,找到方向标,确定图中的方向,再

  明确题目要求解决的问题。

  让学生独立完成后,集体订正。

  四、全课总结。

  今天这节课你有何收获?

  五、作业:想想做做2

  教材分析:

  这部分教材教学乘数末尾有0的乘法的简便笔算方法,是在学生已经掌握两位数乘两位数的笔算和估算以及两位数乘整十数的口算的基础上教学的.

  例题先让学生按照竖式的一般算法以及口算方法算出结果,然后介绍简便的笔算方法,这样安排可以减少计算的错误,并使学生产生学习笔算简便方法的需求.

6、八年级数学上册《线段的垂直平分线的性质定理及逆定理》教学反思

  《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用。上完本节课后,通过其他老师交流,自己静心反思,我主要有以下体会:

  一、课前的认真准备是上好一节课的关键。

  作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。但是由于我在上这一节课的时候,连着前面轴对称的性质的内容一起上了,从而导致内容太多,重难点没有很好的突出。

  二、在教学活动过程。

  整个教学过程中,没有很好体现以学生发展为本的精神。虽然从问题的导入,性质,判定的引出都是由学生动手操作讨论得出,但是由于我在安排这节课的时候,准备要讲得内容太多,导致很多时候都是我一个人在讲学生在听,学生动手写练习的时间就变得很少。再者这节课的重点是线段垂直平分线的性质和判定,我也没有很好的突出重难点。虽然有很多不足之处,我觉得有些地方还是可取的,如:

  1、注重数学思想方法的渗透。

  如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。

  2、注重学生几何语言的`训练

  在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。

  本节课得到的定理为:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  用几何语言表示为:∵MN是AB的垂直平分线,点P为MN上的任意一点(已知)。

  ∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)

  通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。

  逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

  用几何语言表示为:

  ∵PA=PB(已知)。

  ∴点P在AB的垂直平分线MN上。

  (和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)

  3、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。

  三、教后反思。

  针对这一节课中出现的问题,我做出了如下的反思:首先在备课的时候,一定要抓准重难点,安排好一节课的内容,抓准一节课的时间;其次一定要体现以学生为主的原则,要讲练结合,给学生足够多的时间做练习,充分理解接受新的知识。在今后的教学中,我一定不断不改进自己的不足之处。

7、初二数学线段的垂直平分线的性质课后教学反思

  线段垂直平分线在几何作图、证明、计算中有着十分重要的作用。线段的垂直平分线的性质定理是推证线段相等的重要途经,它的逆定理常常用来推证一条直线是一条线段的的垂线或一点是一条线段的中点。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线MN,在MN上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?

  学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。

  在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。

  在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?

  由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。

  在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的最后总结点O是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。

8、《线段的垂直平分线》教学反思

  为了更好地交流和学习教学经验,在学校“评比课”活动中,通过精心准备和备课组、教研组的认真研讨和指导下,我较满意地开了《线段的垂直平分线》这节课。

  《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用,因此我选择本节课作为授课内容。

  上完本节课后,通过观看自己的上课实录,并与备课组老师及其他老师交流,自己静心反思,我主要有以下体会:

  一.课前的认真准备是上好一节课的关键

  作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。在备教材的同时也要了解学生的已有知识的掌握情况,并能充分估计到学生的认知水平和接受能力。

  由于本节课课前准备比较充分,整个教学过程的思路自己感觉比较清晰,步骤比较顺畅。

  二.在教学活动过程中,有几个感觉比较理想的体验:

  1、从实际生活中的情境入手,贴近生活

  我从实际问题“在浦东世博园区内,有三个地铁车站,要在中间建一个展览馆,请问展览馆的位置建在何处才能使三个地铁车站到展览馆的距离相等呢?”引入,设置悬念,引出课题,既让学生体会到数学与生活密切相关又能激发学生的求知欲。其实,在数学教学中,我们要紧密联系学生的生活实际,在现实世界中寻找适宜的数学题材,让教学贴近生活,让学生在生活中看到数学,摸到数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。让学生接触和生活有关的数学问题,势必会激发学生的学习兴趣,从而有效地提高教学效率,使学生真正喜欢数学,学好数学,用好数学,真正做到数学源于生活,又服务于生活。

  2、整个教学过程,体现以学生发展为本的精神

  本节课我设计的教学模式以学生主体性学习为主,提出问题让学生想,设计问题让学生做,方法规律让学生说。教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥了学生的主体作用,让学生真正成为教学活动的主人。我首先从“画一画”活动开始让学生动手操作,接着学生自己去测量、猜测结论,这时老师并不直接灌输,而是有意识地营造一个较为自由的空间,让学生自主探究,合作交流,主动参与到教学中,接着在老师的引导下去验证定理的正确性并引导挖掘出逆定理,这正适应新课程背景下的学生学习方式。

  3、整堂课我设计了“十个一”活动,这些活动的开展扎实有效,学生在实实在在中探索、接受了新知识,有所收益。

  4、注重数学思想方法的渗透

  如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。

  在对线段的垂直平分线的逆定理的证明时,我引入分类思想,分两种情况加以证明。

  在对线段的垂直平分线的概念从集合的角度理解时,又在对学生渗透数学中的集合思想。

  5、注重学生几何语言的训练

  在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。

  本节课得到的定理为:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  用几何语言表示为:∵MN是AB的垂直平分线,

  点P为MN上的任意一点(已知)

  ∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)

  通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。

  逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

  用几何语言表示为:

  ∵PA=PB(已知)

  ∴点P在AB的垂直平分线MN上

  (和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)

  6、采用多媒体动态演示,形象直观,便于学生理解

  在对“线段的垂直平分线的概念”用集合的思想理解时,制作了动态的演示过程,使学生能更形象直观地理解;解决了本节课的一个难点。

  7、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。

  8、注重学生数学思维能力的培养

  对例题和练习的解决,把单单是为了做出题目,而是通过题目把思维过程展现给学生,培养学生的数学思维能力,分析问题,解决问题的能力。例题解决后能引导学生适时做出归纳,总结,培养学生总结能力,并发现规律和有用结论。

  当然,整堂课静下心来思考感觉有很多不理想之处。

  首先,对于引入时的`情境问题,学生回答时出现了一些偏差,但由于自己没有做好对学生回答情况的估计,没有及时纠正学生回答中出现的问题,而是一带而过,转入新课。所以,在今后的教学中要充分考虑到学生的各种情况及时应对。

  其次,要充分相信学生的能力,让学生主动暴露思维过程。

  在对线段的垂直平分线的逆定理进行证明时,由于证明的思维方法平时很少接触,所以没敢让学生自主探究,而是老师提示方法,缺少了学生对逆定理证明的思维,一部分学生的错误思维没有暴露出来,不利于他们对逆定理的理解。课后,向一些学生再次提出逆定理的证明方法,他们也能自己去思维,而且想出了更多的证明方法,这是我意想不到的。例如:已知PA=PB,求证点P在线段AB的垂直平分线上,有同学就说“老师讲的两种方法可以,还可以过P作的平分线,然后利用等腰三角形的三线合一证明这条角平分线就是线段AB的垂直平分线,从而证得点P在线段AB的垂直平分线上等。通过这些,给我一个深刻的启发,以后的课堂教学应多相信学生,多给学生发挥、思维的空间,暴露学生思维方式。

  再次,应加强课堂教学的灵活性。

  整堂课应根据学生的回答灵活应对,在学生碰撞出不同意见的火花时,能善于抓住教育的契机,适时引导,这样学生对问题的理解、掌握会更加深刻。

  最后,整堂课学生的活动时间比较紧张,教师要善于把握时间,适当调整课堂内容。如最后的例2可以适时删减,增加学生活动做题时间。

  总之,从对这节课的反思和各位老师的指导中,我受益匪浅,在今后的教学工作中我会继续发挥自己的长处,改进自己的不足,使自己的教学水平能得到更大的提高,为本校的教学工作做出一点贡献。

9、《线段的垂直平分线》教学反思

  本节我没有按照课本顺序讲解而是设计了以下过程:

  1、讲解垂直平分线尺规画图的方法开始,然后让学生探究理论依据;

  2、练习画垂直平分线,然后动手测量点到线段两端的距离进而得到性质;

  3、还是利用尺规作图,让学生找到画图最关键是保证半径相等,也就是到线段两端的距离相等,根据理论依据得到点在线段平分线上的判定方法。同时解决证明直线为线段的垂直平分线时要同时证明两点都在垂直平分线上。

  通过做练习来看整体效果较好。

10、八年级数学上册《角平分线的性质与判断》教学反思

  本节课是讲角平分线的性质与判定。下面从本节课的教学设计、课堂效果以及本节课的不足之处进行了反思。

  一、对教学设计的反思

  在设计这节课时,我想如果在一节课的时间里把性质和判定学完,那只能是把本节课设计为探究课,而对于性质与判定的应用只能放在下一节课,于是我把这节课设计为探究课,把对角平分线的性质与判定定理的探索作为本节课的重点。本节课的教学方法是启发探究式。为了增加课堂密度和教学效果以及突破本节课的教学难点,我仔细研究了一个课件,知道了以增加学生对角平分线上任意一点的理解。在学生探究角平分线的.性质与判定时,我分别创设了情境,一是为了给学生的探究搭建平台,培养学生的动手操作能力。二是为使学生感受到数学知识来源于实际并应用于实际。同时也体现了新课程标准下的课堂应体现学生的主体性。

  二、对课堂的再认识

  如果说一节课的课堂设计是上好一节课的根本,那么课堂上老师的传授方式更是关键。这其中包括老师对课堂气氛和学生的把握,老师的教态是否大方得体,尤其有很多老师听课的时候,还包括语言是否精炼,知识的逻辑感是否连贯,层次是否清楚等。首先说本节课的课堂气氛,不知是否是第一节课的缘故亦或是学生有点紧张,平时爱回答问题的学生不太敢发言了,所以感觉课堂的气氛还是有些沉闷。当然,老师在调动学生的积极性时,要设法消除学生的紧张感,让学生在课上轻松而愉快的学习知识。这是对任何一位老师的考验。其次通过看自己的录像,平时自己没有在意的细节,包括自己在讲台上的站位和站姿,自己不经意的手势和说话的口头语都暴露出来。感觉自己精心锤炼的语言在录像中仍有些罗嗦等等。总觉得自己上课时怎么会留有那么多的遗憾。再次对课堂所用时间把握不够准确,由于在开始的尺规作图中浪费了一部分时间,当然这一环节时间的浪费与我讲授尺规作图的方式不够合理是分不开的,以至于在后面所准备的习题没有时间去练习,给人感觉这节课不够完整。再就是课堂上安排的内容过多,也是导致前面所提问题的原因。这也使我注意到在授课内容的安排上不应死板教条,而应根据内容和学生情况进行更合理的配置。

  三、不足之处的反思

  通过这堂课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。更要在实际教学中始终贯彻先学后教的模式,更好地培养学生的合作精神与个人能力。

11、八年级数学上册《三角形的高、中线、角平分线》的教学反思

  本节课主要介绍了三角形的三种非常重要的线段,学生已经学过过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识,是学习本节新知识的基础,所以我在复习提问环节不但要求学生说出上述概念的文字语言,还要求学生说出符号语言,为后面三角形的高、中线与角平分线的几何语言做好铺垫。同时我在创设问题情境时我觉得很成功,激起了学生的浓厚兴趣,同时在后面又作为例题进行讲解,既解决了问题情境中提出的问题,又填补了例题的空缺,同时应用三角形的高、 中线知识进行解决,得出三角形中线把三角形分成面积相等的两个三角形的结论。

  本节重点是三角形的三种重要线段,难点是对三角形的.角平分线、中线、高的准确理解、作图与正确运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。

  对于每一种线段的获得我都设计了动手操作,尤其是钝角三角形的高的画法,占去了大量的时间,因为学生在作图上确实存在很大问题。但最终学生还是很好的画出了钝角三角形的三条高,并得出了相关结论。

  虽然在教学中,课程基本内容讲解完毕,也达到了基本的教学目标,但由于课堂容量大,而且有难点不好突破,所以在时间控制上还存在一定的问题,有些前松后紧了,前边如果能挤出3到5分钟,这节课将很顺利的完成。

12、八年级数学上册《角的平分线性质》第一课时教学反思

  一、得

  1、本设计采取了“问题情境——建立模型——解释、应用与拓展”的基本模式,安排多种形式的实践活动,让学生经历了知识的形成与应用的过程,从而为更好地理解,掌握角平分线的性质与判定作准备,发展学生应用数学的意识与能力,增强学生学好数学的愿望和信心。

  2、数学知识不是静态的结果,而是一种主动构建的过程,教学法中采用探究,讨论,演示等形式,使学生与学习内容相互作用,从而获得主动认知,主动构建,充分发展的结果,学生通过画图,类比证明来完成学习任务,学生学得有趣,符合学生认知特点。

  二、失

  1、本节课虽然体现了学生的主动性,孩子的上课积极性比较高,参与程度广,但教材的整合与取舍体现的不够突现,原因是所带班级的`基础比较差,学习能力较弱,所以在整合与取舍方面步子迈得较小了一些,力求孩子在40分钟内扎实有效的掌握双基。

  2、本设计只注重双基的训练,忽视了数学思想方法的渗透,数学知识的迁移,让学生在思考的过程中激发学习兴趣,从而训练学生的思维。

  三、措施

  1、加强教学的钻研和学习,在学生学习能力和学习习惯上多下功夫,达到授之以渔,而是授之以鱼。

  2、加强基本功的学习,因为教材的整合和取舍不是简单的二节课并为一节课,也不是刻意的不讲某一部分的内容,我个人的理解是对教材创造性的使用,面对不同的学生,教师要采取不同的方法,这就需要教师具备相当扎实的基本功,对教材烂熟于心,做到前后知识的衔接,达到课堂教学过程过渡自然,使学生在轻松的氛围中学会知识,快乐学习。

相关文章

推荐文章