平行四边形面积计算小学教案一等奖
1、平行四边形面积计算小学教案一等奖
教学目的:
1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。
2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。
3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
4、培养学生自主学习的能力。
教学重点:掌握平行四边形面积公式。
教学难点:平行四边形面积公式的推导过程。
教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。
教学过程():
一、复习导入:
1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)
2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)
3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。
二、质疑引新:
1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?
2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?
3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。
4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、引导探求:
(一)、复习铺垫:
1、什么图形是平行四边形呢?
2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。
3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。
(二)、推导公式:
1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?
2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)
3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。
4、学生实验操作,教师巡视指导。
5、学生交流实验情况:
⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)
⑵、有没有不同的剪拼方法?(继续请同学演示)。
⑶、微机演示各种转化方法。
6、归纳总结规律:
沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:
⑴、平行四边形剪拼成长方形后,什么变了?什么没变?
⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?
⑶、剪样成的图形面积怎样计算?得出:
因为:平行四边形的面积=长方形的面积=长×宽=底×高
所以:平行四边形的面积=底×高
(板书平行四边形面积推导过程)
7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的'乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。
8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。
四、巩固练习:
1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)
2、练习:
(1)、(微机显示例一)求平行四边形的面积
(2)、判断题(微机显示,强调高是底边上的高)
(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)
(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。
五、问答总结:
1、通过这节课的学习,你学到了哪些知识?
2、平行四边形面积的计算公式是什么?
3、平行四边形面积公式是如何推导得出的?
六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1
2、平行四边形面积计算小学教案一等奖
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的'。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
3、平行四边形面积计算小学教案一等奖
设计说明
在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:
1、动手实践,多维探究。
数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的.内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。
2、分层运用新知,逐步理解内化。
新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。
课前准备
教师准备PPT课件学情检测卡课堂活动卡平行四边形卡片剪刀
学生准备练习卡片平行四边形卡片剪刀
教学过程
⊙创设情境,导入新课
1、常用的面积单位有哪些?
2、出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6m,宽是4m,怎样计算它的面积呢?
根据“长方形的面积=长×宽”,得出长方形花坛的面积是24m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习平行四边形面积的计算。
(板书课题:平行四边形的面积)
设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。
⊙操作实践,探究新知
一、数方格法。
1、复习旧知。
师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。
(出示方格纸)
师:这是什么图形?(长方形)如果一个方格代表1m2,那么这个长方形的面积是多少?(24m2)
师:这是什么图形?(平行四边形)如果一个方格代表1m2,自己在方格纸上数一数,这个平行四边形的面积是多少?
师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。
2、填写并观察表格。
设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。
二、割补法。
1、讨论:你们准备怎样将平行四边形转化成长方形呢?
预设生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。
2、组织学生操作,教师巡视指导。
3、教师示范平行四边形转化成长方形的过程。
(1)先沿着平行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的斜边与平行四边形右侧的边重合为止。
4、观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)
(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?
(2)这个长方形的长与原来的平行四边形的底有什么关系?
(3)这个长方形的宽与原来的平行四边形的高有什么关系?
(4)思考后填空。
①原来的平行四边形的底与长方形的()相等。
②原来的平行四边形的()与长方形的()相等。
③这两个图形的()相等。
4、平行四边形面积计算小学教案一等奖
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积》第一课时(包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1、学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1、使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1、什么叫面积?常用的面积计量单位有那些?
2、出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、平行四边形。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢?
板书课题:平行四边形的面积
2、用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2、推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为长方形的面积=长×宽,
所以平行四边形的面积=底×高。
3、教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、应用反馈。
1、出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2、讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。
通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
5、平行四边形面积计算小学教案一等奖
教学目标:
1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。
2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。
教学重点:探究平行四边形的面积计算公式。
教学难点:充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。
教学具准备:平行四边形纸片、尺子、剪刀、课件
教学过程
一、谈话,揭题:
1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?
2、揭题:平行四边形的面积。
二、探究新知:
问题(一)要求这个()的面积,你认为必须知道哪些条件?
1、同桌交流
2、反馈:①长边×短边=10×7=70平方厘米
②底×高=10×6=60平方厘米
3、引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?
4、学生动手验证(小组合作)
5、请小组代表说明验证过程
问题(二)为什么要沿着高将平行四边形剪开?
问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?
问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?
1、引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?
2、推导公式:平行四边形的面积=底×高
3、小结
问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?
1、动态演示:,引导发现周长不变,面积变大了。
2、动态演示:,发现面积变小了。
3、要求平行四边形的面积,现在你认为必须知道哪些条件?
问题(六)是不是所有平行四边形的面积都等于底×高呢?
让学生拿出各自的平行四边形,动手剪拼,看看行不行。
三、应用新知
1、左图平行四边形的面积=?
2、解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?
四、总结:
1、回想一下今天我们是怎样学习平行四边形的面积?
2、你还想学习哪些知识呢?
6、平行四边形面积计算教学反思
一、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在我这节课中,我让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
二、注重师生互动、生生互动
整个教育界现在都在提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。所谓“互动”就是在课堂教学中师生要有交往,生生要有交往,不能是教师的“满堂灌”、“满堂问”、“满堂练”。师生应该互有问答,学生与学生之间要互有问答。在这节课中,教师始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。在这节课中,每一个环节,都对学生提出明确的要求,引导学生思考,动手操作,推理与表达,并让小组到台前汇报,充分展示,开展小组学习竞赛。
三、练习的设计,由浅入深,环环相扣。
1、是让学生应用公式计算平行四边形面积,通过板演强调书写格式。
2、是让学生判断三个平行四边形的面积计算的对与错,让学生明白计算平行四边形的面积要用对应的底和高相乘。
3、是计算两组平行四边形的面积,通过评价让学生指导第二个平行四边形可以用两种方法来计算。
4、是判断在一组平行线之间的两个平行四边形的面积是否相等,明白等底等高的两个平行四边形的面积相等。
5、让学生知道已知平行四边形的面积与高,求底要用面积除以高;知道面积与底求高要用面积除以底。
6、让学生课后探究,把平行四边形拉成长方形,面积有没有变化,周长有没有变化,拓展学生思维。
不足:
课堂上有效的评价语言在本节课中的'体现不够完善。自己觉得在引导和组织学生上欠缺一些,教学过程当中教学机智不够灵敏,这也是我今后所要重点刻苦钻研的一部分。
7、平行四边形面积计算教学反思
一、借助游戏,使学生感知转化。
转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与
二、联系学生生活,创设情境
三、运用转化,推导平行四边形面积公式
在学生理解了转化的基础上,提出“能不能把平行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把平行四边形转化成了长方形,并通过平行四边形和长方形的内在联系,共同推导出其面积计算公式《平行四边形面积的计算》教学反思教学反思。
有待加强:
一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。
其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的操作过程。如当学生说沿着高剪时,带着学生先作平行四边形的高,使学生明确平行四边形有无数条高,所以沿着平行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。
8、平行四边形面积的计算教学反思
平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:
一、遵循“猜想——验证——推导——应用”教学过程。
在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。
二、注重合作交流,追异求新。
本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。
三、课堂教学中,教师应加大“放”的力度。
学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。
9、平行四边形面积的计算教学反思
一、借助游戏,使学生感知转化。
转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与。
二、联系学生生活,创设情境
结合学生原有的认知水平,通过猜五年(2)班和五年(4)班清洁区的面积创设情境,把生活问题转化为数学问题,通过猜一猜,激发学生的学习兴趣,让学生感受知识来源于生活。
三、运用转化,推导平行四边形面积公式
在学生理解了转化的基础上,提出“能不能把平行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把平行四边形转化成了长方形,并通过平行四边形和长方形的内在联系,共同推导出其面积计算公式。
有待加强:
一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教
学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。
其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的操作过程。如当学生说沿着高剪时,带着学生先作平行四边形的高,使学生明确平行四边形有无数条高,所以沿着平行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。
10、平行四边形面积计算练习课教学反思
昨晚看到了天空有风老师关于平行四边形面积计算练习课的课件,正好和我的进度吻合,今天上课借鉴了一把,感觉真好。
练习题的设计非常实用,如计算面积的第2小题,已知一个底是8分米,另一个底是6分米,这个底上的高是4分米,解这道题学生要选择对应的底和高,6分米和4分米,8分米这个条件在计算面积时没有用到,要让学生明确,计算平行四边形的面积要用对应的底和高相乘。接下来,让学生算出8分米的底所对应的高,用刚刚计算过的面积÷底=高。解决问题的第2题:有甲、乙两个面积相等的平行四边形,乙平行四边形的底是10分米,高是底的一半。甲的高是2分米,它的底是多少分米?这种变式练习,很有必要,学生先求出乙的高,然后底×高=面积,再用面积÷底(8分米)=高。解决问题的第3题:一块底边长24米,高10米的.平行四边形地面要贴瓷砖,每平方米需要贴6块瓷砖,这块地面一共需要多少块瓷砖?和第4题:一个平行四边形停车场,底是63米,高是25米,平均每辆车占地15平方米,这个停车场可停多少辆车?这学生通过对比,知道求了面积之后,什么情况用乘法?什么情况用除法计算。最后的考一考和比一比,通过观察对比、分析得出:周长相等的平行四边形和长方形,长方形的面积大;面积相等的平行四边形和长方形,平行四边形的周长的。
11、小学课文《平行四边形的面积》教学反思
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。
我设立的教学目标是
(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;
(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力生的空间观念。
反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的.长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、我的遗憾
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
12、《平行四边形面积的计算》教学反思
平行四边形面积的计算,是学习平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:
一、遵循“猜想——验证——推导——应用”教学过程。
在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的.数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的最高境界。
二、注重合作交流,追异求新。
本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。
三、课堂教学中,教师应加大“放”的力度。
学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。