教案

三角形边的关系教学教案一等奖

2023-07-03 15:32:08

  三角形边的关系教学教案一等奖

三角形边的关系教学教案一等奖

1、三角形边的关系教学教案一等奖

  设计说明

  1.三角形3条边的关系是在学生已经掌握了三角形的概念、三角形具有稳定性的基础上学习的。本节课主要学习三角形3条边的关系及应用三角形3条边的关系解决一些实际问题。通过本节课的学习,可以为学生空间观念的发展、数学活动经验的积累提供机会,也可以为学生推理意识的建立和对推理过程的理解打下基础,还可以为学生应用自己的方式有条理地表达推理过程作铺垫。

  2.教学中,根据小学生喜欢玩的'天性,首先设计让学生拼摆三角形的动手操作活动,使学生一开始就进入到学习状态。在教师的引导下,当学生发现三角形3条边的关系后,出示教材上的情境图,让学生学会应用所学知识解决实际问题,训练学生灵活应用知识的能力,使学生在解决问题的过程中理解并掌握本节课的重点。

  3.在教学过程中,由行动生问题,由问题生假设,由假设生验证,由验证生新价值,让学生在实践中自主学习、主动探究,从而提高学生的学习能力和创造能力。

  课前准备

  教师准备 多媒体课件

  学生准备 长度不同的小棒

  教学过程

  ⊙情境导入

  1.请同学们回忆一下,什么样的图形是三角形?[由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形]如果用一根小棒代表一条线段,围成一个三角形需要几根小棒?任意给你3根小棒,你能围成一个三角形吗?

  2.同学们的意见不统一,究竟谁说得对呢?我们亲自用小棒摆摆看,请大家打开学具袋,从中任意取出一些小棒试试看。可以换小棒多试几组,注意小棒要首尾顺次相连。

  设计意图:通过“3根小棒能不能围成一个三角形”这一问题,引发学生的认知冲突,激发学生探究三角形三边关系的学习兴趣。

  ⊙探究新知

  1.拼摆尝试。

  师:任意取3根小棒,看能不能摆成三角形。(学生任意取3根小棒试着摆一摆,多摆几次,记录下来)

  师:你发现了什么?(3根小棒有的能摆成三角形,有的不能摆成三角形)

  师:在什么情况下3根小棒能摆成三角形?在什么情况下3根小棒不能摆成三角形?让我们用手中的学具通过小组合作来寻找答案。

  2.合作实践。(出示课堂活动卡)

  3.小组汇报。

  预设

  小组1:通过用小棒摆三角形,借助测量数据、分析数据,我们发现只有当三角形的其中两边的和大于第三边的时候才能摆成三角形。

  小组2:我们小组发现,当三角形的任意两边的和小于或等于第三边的时候就不能摆成三角形。

  (教师板书:三角形任意两边的和大于第三边)

  4.我们在判断3条线段能否围成一个三角形时,是不是一定要写出3个算式才能判断呢?

  讨论后得到以下结论:利用“两短边的和大于长边”就能判断3条线段能否围成一个三角形。

  5.教学教材62页例3。

  通过刚才的学习,同学们不仅掌握了判断3条线段能否围成一个三角形的方法,还找出了最佳的判断方法。请同学们观察小明上学的示意图,如果小明想走最短的路上学,你认为他会选择走哪条路?(他会选择走中间这条路)你是怎样判断的?

  预设

  生1:因为中间这条路是直的,其他的路是弯的,所以走中间这条路最近。

  生2:如果小明走通过邮局到学校的这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的3条边的关系可知,小明家到邮局,邮局到学校这两条边的和一定大于第三边,即中间这条路,所以走中间这条路最近。

  教师小结:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

  设计意图:通过拼摆三角形的活动,使学生发现三角形的3条边的关系,并能以此为依据,解决生活中的实际问题,体现了数学在生活中的应用价值。

2、三角形边的关系教学教案一等奖

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.

  本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.

  2、教法建议

  没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:

  (1)强化能力

  新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.

  通过阅读,使学生初步认识数学概念的`含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力

  (2)主动获取

  在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第

  一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维

  由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段 , ( ),若第三条线段c满足 -<cc则线段 , ,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.

  (4)加深理解

  进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角形的根据,也为今后解决字母取值范围问题提供了有利的依据.

  整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.

  教学目标:

  (1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;

  (2)弄清三角形按边的相等关系的分类;

  (3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;

  (4)通过三角形三边关系定理的学习,培养学生转化的能力;

  (5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.

  教学重点:三角形三边关系定理及推论

  教学难点:三角形按边分类及利用三角形三边关系解题

  教学用具:直尺、微机

  教学方法:谈话、探究式

  教学过程:

  1、阅读新课,回答问题

  先让学生阅读教材的第一部分,然后回答下列问题:

  (1)这一部分教材中的数学概念有哪些?(指出来并给予解释)

  (2)等腰三角形与等边三角形有什么关系?

  估计有的学生可能把等腰三角形和等边三角形看成独立的两类.

  (3)写出三角形按边的相等关系分类的情况.

  教师最后板书给出.

  (要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)

  2、发现并推导出三边关系定理

  问题1:用长度为4cm、 10cm 、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)

  问题2:你能解释上述结果的原因吗?

  问题3:任何三条线段都能组成一个三角形吗?满足什么条件时,三条线段可组成一个三角形?

  定理:三角形两边的和大于第三边

  (发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)

  3、导出三边关系定理的推论及其它两种方法

  由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:

  估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.

  推论:三角形两边的差小于第三边

  (给每一个学生表现个人数学语言表达才能的机会)

  能否简化上面定理及推论?从而得到如下两种判定方法:

  (1)、已知线段 , ( ),若第三条线段c满足 -<cc则线段 , ,c可组成一个三角形.

  4、三角形三边关系定理及推论的应用

  例1 判断题:(出示投影)

  (1)等边三角形是等腰三角形

  (2)三角形可分为不等边三角形、等腰三角形和等边三角形

  (3)已知三线段 满足 ,那么 为边可构成三角形

  (4)等腰三角形的腰比底长

  (本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)

  (本例要求学生说出解题思路,教师点到为止)

  例3 一个等腰三角形的周长为18 .

  (1) 已知腰长是底边长的2倍,求各边长.

  (2) 其中一边长4 ,求其他两边长.

  这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.

  (数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间)

  例4 草原上有4口油井,位于四边形ABCD的4个顶点,

  如图1现在要建一个维修站H,试问H建在何处,

  才能使它到4口油井的距离HA+HB+HC+HD为最小,

  说明理由.

  本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.

  5、小结

  本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:

  (1)判断三条已知线段能否组成三角形

  采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.

  (2)确定三角形第三边的取值范围

  两边之差<第三边<两边之和

  若时间宽裕,让学生经讨论后自由表述,其他同学补充,自己将知识系统化,以自己的方式进行建构.

  6、布置作业

  a. 书面作业P41#8、9

  b. 思考题:1、在四边形ABCD中,AC与BD相交于P,求证:

  (AB+BC+CD+AD)<AC+BD<AB+BC+CD+AD

  2、用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范围,所以可知最多可以由7根火柴棒组成)

3、三角形边的关系教学教案一等奖

  一、教学目标

  1、探究三角形三边的关系,理解三角形任意两边的和大于第三边;

  2、能根据三角形三边的关系解释生活中的现象,提高解决实际问题的能力;

  3、积极参与探究活动,获得成功体验,产生学习数学的兴趣。

  二、教学重难点

  重点:探索三角形三边之间的关系

  难点:三角形任意两边的和大于第三边

  三、教学过程

  Ⅰ、创设情境,引入新课

  师:同学们,昨天我们已经认识了三角形,谁能来告诉大家什么是三角形么?

  生:由三条线段围成的图形叫做三角形。

  师:讲得很好,也就是说三角形是由三条线段所围成的。那么是不是只要有三条线段,我们就一定能围成三角形呢?

  生:是(有些答不是)。

  师:现在同学们从老师发的5根小棒中选出3根,看看是否能围成三角形?好,开始。 (板书:不能围成三角形 能围成三角形)

  生:摆一摆(上台展示)

  师:任取三根小棒,有时能围成三角形,有时却围不成三角形,那么围成与围不成,跟三角形的什么有关系呢?

  生:三角形的边。

  师:大家回答得很好,三角形的边有什么样的关系呢?这就是我们今天要研究的问题。(板书:三角形边的关系)

  Ⅱ、自主探究,提炼规律

  师:下面让我们一起来完成这个探究活动,请齐读操作要求,开始!

  生:进行实验并完成表格填写(教师进行指导)

  组别小棒的长度能否围成三角形两边之和与第三边的大小关系

  13 5 83+5○8;3+8○5;5+8○3

  24 5 104+5○10;4+10○5;5+10○4

  33 4 53+4○5;3+5○4;4+5○3

  45 8 105+8○10;5+10○8;8+10○5

  师:坐好。大家认为有哪几组是围不成三角形的呢?

  生:前两组。

  师:让我们一起来看看

  生1,你发现的两边之和与第三边的关系是什么?

  生1:3+5=8,3+85,5+83(课件展示:3、5、8,围不成)

  师:很棒,我们继续来看第2组

  生2,你发现了什么?(教师手指两边之和与第三边的关系)

  生2:4+510,4+105,5+104(4,5,10,围不成)

  师:为什么这两组的小棒围不成三角形呢?

  生:3+5=8,4+510(或有两条边的长度的和没有第三条边长)

  师:说得很好,也就是说两边之和小于或等于第三边,所以这三根小棒围不成三角形。(板书:两边的和第三边)

  师:那围成三角形的就是3、4组了,对吧?

  生:对。

  师:生3,你发现的两边之和与第三边的关系是什么?

  生3:3+45,3+54,4+53看第三组的课件演示(3、4、5,围成)

  师:这个呢?

  生3:能围成,5+810, 5+108, 8+105

  师:回答得非常棒,大家试一试将3、4组与1、2组进行对比,为什么3.4组能围成三角形?

  生:它3个都是大于的(有些同学会回答:两边的和比第三条边大)。

  师:那也就是说围成三角形是两边的和大于第三边 (板书:两边的和>第三边?)

  师:这个有问题么,大家看看屏幕,1、2组也有两边的和大于第三边呀?

  您现在正在阅读的四年级下册《三角形三边的关系》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!四年级下册《三角形三边的`关系》教学设计生:都大于。

  师:对!必须强调每组都是,即是任意,我们把它表示为:任意两边的和大于第三边。(板书:擦去?,补任意)

  师:我们发现的规律就出现在课本的82页,大家把它画起来。(5秒)齐读。

  生:三角形的任意两边之和大于第三边。(板书:三角形的任意两边之和大于第三边)

  Ⅲ、巩固应用,变式提升

  例 判断下列三条 线段是否能围成三角形?

  (1)6,7,8 (2)4,5,9 (3)3,6,10

  (学生先用三条式子来判断是否能围成三角形,教师再让学生讨论交流好方法)

  通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形。

  教师指导学生:将两条短的边相加与最长的边相比,如果大于,就能围成三角形。

  1、判断以下几组小棒能否围成三角形,能的打,不能的打,并说明理由。

  (1)3 cm 4 cm 5 cm ( )

  (2)3 cm 3 cm 3 cm ( )

  (3)2 cm 2 cm 6 cm ( )

  (4)3 cm 3 cm 5 cm ( )

  注:学生学会将两条短的边相加与最长的边相比,如果大于,就能围成三角形,从而提高做题速度。

  2、生活中的数学

  3、巩固提升

  小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

  (1)第三根木条可以是多少分米?(取整数)

  (2)第三边的木条的长度是a分米,那么a的取值范围是( )( )

  Ⅳ、回忆新知,归纳总结

  师:通过本节课的学习,你收获了什么?

  生:三角形任意两边之和大于第三边。(等等)

  五、板书设计

  三角形边的关系

  不能围成三角形 能围成三角形

  两边之和第三边 任意两边之和第三边

  三角形任意两边之和大于第三边

4、三角形边的关系教学教案一等奖

  教学目标

  知识与技能:发现并理解三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题。培养归纳、概括能力和推理能力。

  过程与方法:。积极参与探究活动,经历发现问题、探究问题及得出结论的过程,提高学生观察、思考、抽象概括和动手操作的能力。能根据三角形三边的关系解释生活中的现象。

  情感态度与价值观:提高学生自主探索和合作交流的能力。激发对数学的探究兴趣,引导学生树立自己探索真理的勇气和信心,享受成功的喜悦。

  教学重点

  三角形三边关系的实验与探究。

  教学难点

  利用三角形三条边之间的关系解决实际问题。

  教具准备

  三角形、支直尺、不同长度的小纸条若干、分组操作记录表、双面胶、自制课件ppt。

  教学过程

  一、导入。

  1、谈话创设情境:

  这节课老师有一个愿望,那就是能够看到同学们:敢想敢说敢问敢辩敢失败,特别是敢失败,因为水稻之父袁隆平曾经说过:失败里包含着成功的因素。你们能帮助老师实现愿望吗?(课件出示)

  2、复习旧知:

  (1)(欣赏图片)你看到了什么?

  (2)那你能说一说,你对三角形都有哪些了解?

  (3)三个顶点,三个角,三条边,三角形具有稳定性;

  (4)那么到底什么是三角形?(由三条线段围成的图形)分析这句话突出“围成”。

  3、质疑:是不是任意的三条线段都能拼成三角形呢?导入新课

  二、动手操作、探究新知。

  (一)、分组操作:请同学们用你们手上的小纸条来围成一个三角形,你们能完成吗?

  操作要求:

  1、每6人一组。组长一人、记录员一人、测量员一人、其余的是操作员

  2、测量员量出你所选择的纸条的长度;

  3、记录员做记录;

  4、操作员动手拼三角形,把你拼出来的图形贴在下面;

  5、组长汇报结果。

  注意:相邻的两条线段要端点相连。

  (二)汇报结果:按顺序组长分组汇报结果(本组选择的纸条的长度、能否拼成三角形)。

  展示操作结果:

  试验次数三边长度(cm)结果三角形三条边的长度关系

  (1)3、5、9否较短的两条边长度之和小于第三边3+5<9

  (2)3、6、9否较短的两条边长度之和等于第三边3+6=9

  (3)3、5、7是较短的两条边长度之和大于第三边3+5>7

  (4)5、6、7是较短的两条边长度之和小于第三边5+6>7

  (5)5,8,13否较短的两条边长度之和等于第三边5+8=13

  (6)7,11,12是较短的两条边长度之和大于第三边7+11>12

  (7)18,7,5否较短的两条边长度之和小于第三边5+7<18

  (8)11,4,15否较短的两条边长度之和等于第三边4+11=15

  (三)引导学生发现特性:(课件演示)

  1、两条边的长度之和小于或等于第三条边的长度不能围成三角形

  2、较短的两条边的长度之和大于第三条边的长度能围成三角形

  3、学生自由讨论、总结:三角形三条边的关系(三角形任意两条边的长度之和大于第三条边的长度)(揭题、板书)

  4、读一读,说一说关键字词是什么?你怎样理解(任意和大于)?

  三、精彩练习、拓展提升。(课件出示)

  在能围成三角形的各组小棒下面画“√”。(单位:厘米)

  (5)1cm2cm3cm()(6)4cm2cm3cm()

  (7)3cm4cm5cm()(8)3cm3cm5cm()

  四、学以致用。

  (一)、课件出示:课本82页例3情境图。

  1、这是小明同学上学的路线,请大家仔细观察一下,他可以怎样走?

  2、为了描述方便,我们把这几条路线分别标上颜色,在这几条路线中哪条最近?为什么?

  3、归纳汇报:请同学看一看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?因为这三条路正好形成两个三角形,而中间的这条路相当于三角形的一条边,而在三角形中,其他两边之和一定大于第三边,所以中间的这条路最近。得出结论:两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。(板书)

  (二)完善表格。

  五、课堂总结。

  同学们,通过今天的研究你有什么收获吗?

  1.发现并理解了:三角形任意两边之和大于第三边,并能运用规律解决生活中的实际问题,找出到达一个地方最短的路线。

  2.通过动手实践,分析数据,体验探索和发现三角形边的关系的过程,培养了发现问题的意识及提出问题的能力,积累探索问题的方法和经验。

  板书设计:

  三角形三边关系

  三角形任意两边之和大于第三边。

  两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。

5、三角形边的关系教学教案一等奖

  【教材分析】

  本课是在学生初步了解三角形定义的基础上,让学生进一步理解三角形的特征,即“三角形任意两边之和大于第三边”,加深学生对三角形的认识,同时也为今后学习三角形和四边形的联系和区别打下基础。三角形边的关系的定理主要提供了判断三条线段能否组成三角形的依据,熟练灵活地运用三角形三边关系有助于提高学生全面思考问题的能力。教材积极创设了动手操作的情境,力求让学生在活动中感知、体会并进行归纳总结。同时,也让学生对演绎推理和反证法有初步的了解。

  这节课力求让学生在动手操作与引申思考中,经历“发现问题—总结规律—解决问题—实践应用”的过程,真正放手让学生去“做数学”,经历“数学化”的过程。

  在学具的准备上,运用了胶片上画线段的方法来摆三角形,尽可能地减小了操作中的误差。

  【学生分析】

  对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。

  【教学过程】

  一、创设生活情境,揭示课题

  (课件出示:教师上班路线图)

  师:老师从家里出发到学校上班有三条路可以走,你认为老师走哪条路近呢?

  生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。

  生2:我也认为老师走第二条路近。

  师:是啊,弯来弯去的线总是比直的线要长。现在老师请同学们再仔细观察,连接老师家、公园和学校三个地方,接近一个什么图形?连接老师家、国贸大厦和学校这三个地方,又接近一个什么图形?

  生:三角形。

  师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系)

  二、开展探索活动,体验边的关系

  1、发现问题。

  师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢?

  生1:随自己的意思,可长可短。

  师:把这根吸管随意剪成三段,能围成三角形吗?

  生2:能。

  生3:不一定。

  师:每人从材料袋中,取出一根吸管来剪一剪、围一围。

  (学生活动,教师巡视了解情况,有的围成,有的围不成)

  师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上)

  师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成)

  师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。

  生4:因为其中的两根吸管太短了,再长一些就围得成了。

  师:同学们认为两根吸管的长度和小于第三根所以围不成,那么,两根吸管的长度和多长时才可以围成呢?

  2、进行猜想。

  生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书)

  生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书)

  生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便)

  师:这些都只是同学们的猜想,这些猜想是否正确呢?当我们在学习中遇到这种情况时,可以怎么办?

  生:可以做实验来验证一下。

  3、实验验证。

  师:在做实验前,老师还有些不放心,“两根吸管的.长度和等于第三根”这个实验的材料怎么找呢?

  生1:可以量一量,剪一剪。

  生2:把一根吸管对折剪开,其中的一段再平分成两段。

  生3:拿三根一样长的吸管就可以了。

  师:这样的话,两根吸管的长度和还等于第三根吗?

  生4:大于第三根,可以用做第二个实验的材料。

  师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。

  (学生实验,教师巡视指导)

  师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。

  生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根平均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程)

  师:大家的实验结果与他们一样吗?

  生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程)

  生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。

  师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。

  生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程)

  师:对于他们这一组的实验情况,同学们有什么想说的吗?

  生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。

  师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成)

  师:现在你们想重新发布实验结果吗?

  生10:两根吸管的长度和等于第三根时不能围成三角形。

  师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。

  师:谁来发布第二个实验结果?

  生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同)

  生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法)

  师:你想问题很全面,老师和同学都很佩服你,真了不起!现在谁能把实验的结果再来发布一下?

  生13:任何两根吸管的长度和大于第三根时,可以围成三角形。

  师:我们可以把“随便”、“任何”说成“任意”。(板书:任意)

  4、得出结论。

  师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。

  生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。

6、三角形三边关系的教学反思

  上完本节课的内容,心中有说不出的喜悦。一:我的学生能力不比县城学生能力差。二:我看到了他们的动手操作能力、总结能力、小组合作能力。三:我也算是个合格的老师。

  三角形的三边关系内容非常简单,只要让学生明白三角形任意两条边之和大于第三边就ok了。这一知识可以直接告诉学生,让他们记住,再用其做题,相信题也可以做的很好。但正如我县名师吕健老师所说的,每一个知识在学生的`人生中都只有一次。是的,她的我让顿悟,我要让我的学生不但要知道还要明白为什么任意两边之和要大于第三边?于是,开始了本节的备课。听过几次名家讲的本节课,课堂容量大有点不适合我们的常态课堂。于是乎我进行了借鉴改动变成了我自己的课堂。课前给学生分好组,组内学生又编出了1 2 3 4号,组内每个学生带的小棒尺寸不同,但确保组和组之间是相同。

  课上由例题主题图导入,抽象成三角形的三边,提出疑问:本题中三角形两边之和大于第三边,是不是所有三角形都这样呢?学生意见很一致,认为不可能。于是利用自己的学具,以小组为单位绽开了探讨,并完成下面的表格。

  小棒组别

  能或不能摆成三角形

  任意两边的和是否大于第三边

  学生动手操作热情高涨,更出乎我意料的是:所有组都总结出了规律。

  本节中的不足之处:

  课前让学生准备以下四组学具:

  (1)6 7 8 厘米

  (2)4 5 9

  (3)3 6 10厘米

  (4)4 5 6厘米

  学生观察完表格得出结论的同时还有学生对其进行了补充:任意两边的和都大于第三边并且还得是边长是有顺序的。此时我恍然顿悟,(1)和(4)能围成三角形而它们的数字确实是按顺序排列。这是我备课的盲点。此时,我又反问学生:难道只有这样的按顺序排列的才能组成三角形吗?利用新的一组教具32 28 50厘米,我们大家一起来围三角形。用此来进一步证实了结论。

7、三角形三边之间的关系教学反思

  在教学《三角形三边之间的关系》一课时,学生在任选长短不一的小棒围三角形的时候发现并不是任意三根小棒都可以围成三角形,这是为什么呢?引出课题。出示书里的情境,从邮局到杏云村,走哪条路最近?为什么?是不是所有的两边之和都大于第三边呢?学生通过画三角形、摆三角形验证三角形任意两边之和大于第三边的结论。这样学生容易掌握。荷兰数学教育家弗赖登塔尔认为,学习数学唯一正确的方法是让学生进行“再创造”,教师的任务是引导,帮助(包括设计合适的活动或作业)学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。本课教学设计,我力求突破传统的教学模式,在学生获取知识的过程中,大胆放手,鼓励学生参与数学实验,探索和发现数学规律,培养学生探索精神和科学态度,取得了较好的教学效果。

  1、让学生成为数学学习的主人。

  本节课通过动手操作,充分激发学生的学习兴趣,让学生逐步完成知识的学习建构,真正成为学习的主人。一开始,我设计了让学生动手搭建三角形的活动,在操作活动的基础上,学生进行反思(为什么①和②不能围成三角形?),发现并猜想到:三角形任意两边长度之和大于第三边。接着,我组织学生通过在小组内画一画,量一量,比一比等活动,验证了三角形任意两边的`和大于第三边。活动培养了学生从个别到一般的归纳思维。整节课,学生学习热情高,积极参与,课堂学习氛围浓厚。

  2、发挥教师在教学活动中的主导者,调控者的作用。

  教师作为教学活动的主导者、调控者,应有意留足时空,抓住重点字词引导学生在“无疑中生疑”,把问题发现的机会提供给学生,培养学生的发现意识,进而通过在“活跃”的实践操作中进行“冷静”反思,相互讨论,举例验证等方式主动释疑。本节课设计了两个关键问题:一个是,为什么①和②不能围成三角形;另一个,针对“任意”含义的理解提出的,同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!通过两个问题的思考,学生对“三角形任意两边的和大于第三边”有了更深刻的理解。

  3、采用小组合作学习,引导学生自主合作、探究研讨,注重培养学生协作意识。

  本节课,我两次采用了小组合作学习,第一次是在学生动手搭建三角形的活动时候,第二次是在验证猜想的活动时候。两次小组合作学习,我都提出了具体的活动要求,组织学生分工明确,并且第一次的活动要求比第二次更具体更细化。小组活动让每一个学生都有机会参与,充分享有发言权,并能及时发现自己思维过程中的疑结,修正了自己的不足,同时学会了合作,学会了从他人智慧中获得启迪。我崇尚这种学习方式。

8、《三角形三边关系》的教学反思

  《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来和第三条一样长的情况该怎样去处理,在实际操作中有误差,这样就会让大部分学生会认为能围成三角形,对于这一点该怎样去处理确实让人头疼,经过研讨我们组老师建议尽量的减少教具的误差,之后加上课件的.直观演示,可能会让学生能更好地理解,通过这一次的连片教研我更好地体会到这样做的原因了。其次在教学过程中另一个让我们纠结的地方是到底是先研究能围成的两组,还是先研究不能围成的两组,经过讨论大家一致认为由学生的争议点2.6.8这一组不能围成的入手,但是到最后该怎样引导学生去自己探索三边之间的关系,在这一点上我做的有些生涩。经过这次的研讨,于华静老师给的建议让我顿时觉得开阔了很多,调整了研究的顺序让学生从简单入手,慢慢的深入研究,把主动性还给学生。这是我第一次以这样的形式参加连片教研,过程虽是难过,但是收获却是满满的!

9、《三角形三边的关系》教学反思

  今天早上在教学评估活动中,我讲授了《三角形三边的关系》一课,我对这一节课有以下点反思:

  1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。

  数学教学应结合生活实际问题和从学生已有的知识出发,使学生能在认识、学习和使用数学知识的过程中,初步体验到数学知识之间的联系,进一步感受到数学与现实生活的密切联系,增强学好数学的信心,培养应用数学的意识和能力。学生在生活中已经明确知道的拐弯要比走直路远,利用这一生活经验,我在这一课的开始借鉴了课本中把学生从家到学校多路选择的场景来激发学生的兴趣,使学生感觉更亲切自然。但是在这儿我有意识的对课本原图作了一些改变,取消了原图中经过商店的一条道路,目的是让学生更容易把三点之间的道路抽象成三角形,跟本节内容更容易过渡衔接,跟以前教学本节内容时相比,我认为效果还是不错的。

  2、小组活动要精心设计,力求有序有效、目的明确、可操作性强。

  新课程标准认为,数学的知识、思想和方法应由学生在现实的数学活动中加以理解,通过实践活动,让学生获得更多的直接经验,从而激发学生的求知欲、增进自信心,从学生已有的生活经验和已有的知识出发,给学生提供观察、操作、实验、讨论、及独立思考的机会,通过共同的讨论交流,从而得出结论。因此,在数学活动中,要充分给予学生动手和思考的空间,同时要保证学生活动的有序性,从而实现活动的有效性。为了达到这一效果,我在这节课数学活动的设计中,注意了教师引导,在活动中从“有什么发现”到“为什么这样”逐层提出问题,让学生始终明确方向,有动手的强烈欲望,从而避免了以往教学过程中部分学生重结论轻过程,甚至直接去课本中寻找结论的现象,进一步培养了学生深入探究的习惯和能力。

  3、汇报交流过程中,教师要注意把握重点,选例有针对性。

  每次活动过程中及结束后,必然存在讨论交流的过程,这其中包括小组内的交流和在全班汇报交流。汇报不是小组交流的重复,在汇报过程中要看抓住具有代表性的例子,在存疑处适时引发下一次的实验活动及讨论过程。本课在小组汇报实验结果后,我先选择不能组成三角形的两组小棒组织学生讨论,并在大屏幕上动态演示,学生的注意力很自然地引导到研究三角形两边之和与第三边之间的关系。在此基础上,再一次组织小组讨论,研究其他几组能围成三角形的小棒的长度有什么共同点。通过比较分析,学生自然而然地发现了“三角形任意两边之和大于第三边”的规律。

  4、练习设计向教学目标层层推进,注重强化知识生成及应用。

  练习是数学教学重要的组成部分,恰到好处的练习,不仅可以巩固知识,形成技能,而且还可以启发思维,培养能力。在教学过程中除了为强化巩固设计的一般练习题,还要根据教学目标设计一些综合性题目和开放型题目,可以培养学生思维的'灵活性和深刻性,克服学生思维的呆板性,更主要的是能激发学生求知的欲望、学习数学的兴趣。本节课中,我围绕“三角形任意两边之和大于第三边”这一性质设计了较为简单的“练一练”,目的是让学生正确应用知识;又通过设计“算一算”,目的是让学生充分理解三角形三边的关系,会求已知两条边,第三条边最小可以是几;又设计了“挑战自己”题目,此题为后面用字母表示三角形三条边的关系奠定了基础(a+b>ca+c>bb+c>a);最后一题设计了“做一做”,这道题目有一定难度,能够综合培养学生深入理解知识、灵活运用知识、学会有序思考、发展逻辑思维等多方面作用。总归,环环相扣的练习能使学生熟练正确的掌握知识。总得来说,这节课也留下了许多缺憾和不足,主要表现在:1、学生动手操作、同伴互助不够充分,学生主观能动性没有调动起来,没能让学生充分体验到学习数学所带来的乐趣;2、让学生总结“三角形三边的关系”时,学生尽管能说出“任意”两边之和大于第三边就能围成三角形,但在这个环节中我给学生说的机会不多,没能让更多的学生尝试说一说;3、在分小组探讨“三角形三边的关系”性质时,由于担心耗时过多,怕完成不了后面的练习题目,没能放手让学生大胆、自主地探索三角形三边的关系;4、本节课我的数学语言不够精准,说得有点儿多,显得啰嗦。

10、《三角形三边的关系》教学反思

  在教学《三角形三边之间的关系》一课时,学生在任选长短不一的小棒围三角形的时候发现并不是任意三根小棒都可以围成三角形,这是为什么呢?引出课题。出示书里的情境,从邮局到杏云村,走哪条路最近?为什么?是不是所有的两边之和都大于第三边呢?学生通过画三角形、摆三角形验证三角形任意两边之和大于第三边的结论。这样学生容易掌握。荷兰数学教育家弗赖登塔尔认为,学习数学唯一正确的方法是让学生进行“再创造”,教师的任务是引导,帮助(包括设计合适的活动或作业)学生去进行这种再创造的工作,而不是把现成的知识灌输给学生。本课教学设计,我力求突破传统的教学模式,在学生获取知识的过程中,大胆放手,鼓励学生参与数学实验,探索和发现数学规律,培养学生探索精神和科学态度,取得了较好的教学效果。

  1、让学生成为数学学习的主人。

  本节课通过动手操作,充分激发学生的学习兴趣,让学生逐步完成知识的学习建构,真正成为学习的主人。一开始,我设计了让学生动手搭建三角形的活动,在操作活动的基础上,学生进行反思,发现并猜想到:三角形任意两边长度之和大于第三边。接着,我组织学生通过在小组内画一画,量一量,比一比等活动,验证了三角形任意两边的和大于第三边。活动培养了学生从个别到一般的归纳思维。整节课,学生学习热情高,积极参与,课堂学习氛围浓厚。

  2、发挥教师在教学活动中的主导者,调控者的作用。

  教师作为教学活动的主导者、调控者,应有意留足时空,抓住重点字词引导学生在“无疑中生疑”,把问题发现的机会提供给学生,培养学生的发现意识,进而通过在“活跃”的实践操作中进行“冷静”反思,相互讨论,举例验证等方式主动释疑。本节课设计了两个关键问题:一个是,为什么①和②不能围成三角形;另一个,针对“任意”含义的理解提出的,同学们刚才实验得出①和②不能围成三角形,而在①中,3+7>4呀,两边之和大于第三边!通过两个问题的思考,学生对“三角形任意两边的和大于第三边”有了更深刻的理解。

  3、采用小组合作学习,引导学生自主合作、探究研讨,注重培养学生协作意识。

  本节课,我两次采用了小组合作学习,第一次是在学生动手搭建三角形的活动时候,第二次是在验证猜想的活动时候。两次小组合作学习,我都提出了具体的活动要求,组织学生分工明确,并且第一次的活动要求比第二次更具体更细化。小组活动让每一个学生都有机会参与,充分享有发言权,并能及时发现自己思维过程中的疑结,修正了自己的不足,同时学会了合作,学会了从他人智慧中获得启迪。我崇尚这种学习方式。

11、《三角形三边的关系》教学反思

  今天早上在教学评估活动中,我讲授了《三角形三边的关系》一课,我对这一节课有以下点反思:

  1、情景创设要以学生生活为基础,以更好地服务于教学内容为标准。

  数学教学应结合生活实际问题和从学生已有的知识出发,使学生能在认识、学习和使用数学知识的过程中,初步体验到数学知识之间的联系,进一步感受到数学与现实生活的密切联系,增强学好数学的信心,培养应用数学的意识和能力。学生在生活中已经明确知道的拐弯要比走直路远,利用这一生活经验,我在这一课的开始借鉴了课本中把学生从家到学校多路选择的场景来激发学生的兴趣,使学生感觉更亲切自然。但是在这儿我有意识的对课本原图作了一些改变,取消了原图中经过商店的一条道路,目的是让学生更容易把三点之间的道路抽象成三角形,跟本节内容更容易过渡衔接,跟以前教学本节内容时相比,我认为效果还是不错的。

  2、小组活动要精心设计,力求有序有效、目的明确、可操作性强。

  新课程标准认为,数学的知识、思想和方法应由学生在现实的数学活动中加以理解,通过实践活动,让学生获得更多的直接经验,从而激发学生的求知欲、增进自信心,从学生已有的生活经验和已有的知识出发,给学生提供观察、操作、实验、讨论、及独立思考的机会,通过共同的讨论交流,从而得出结论。因此,在数学活动中,要充分给予学生动手和思考的空间,同时要保证学生活动的有序性,从而实现活动的有效性。为了达到这一效果,我在这节课数学活动的设计中,注意了教师引导,在活动中从“有什么发现”到“为什么这样”逐层提出问题,让学生始终明确方向,有动手的强烈欲望,从而避免了以往教学过程中部分学生重结论轻过程,甚至直接去课本中寻找结论的现象,进一步培养了学生深入探究的习惯和能力。

  3、汇报交流过程中,教师要注意把握重点,选例有针对性。

  每次活动过程中及结束后,必然存在讨论交流的过程,这其中包括小组内的交流和在全班汇报交流。汇报不是小组交流的重复,在汇报过程中要看抓住具有代表性的例子,在存疑处适时引发下一次的实验活动及讨论过程。本课在小组汇报实验结果后,我先选择不能组成三角形的两组小棒组织学生讨论,并在大屏幕上动态演示,学生的注意力很自然地引导到研究三角形两边之和与第三边之间的关系。在此基础上,再一次组织小组讨论,研究其他几组能围成三角形的小棒的长度有什么共同点。通过比较分析,学生自然而然地发现了“三角形任意两边之和大于第三边”的规律。

  4、练习设计向教学目标层层推进,注重强化知识生成及应用。

  练习是数学教学重要的组成部分,恰到好处的练习,不仅可以巩固知识,形成技能,而且还可以启发思维,培养能力。在教学过程中除了为强化巩固设计的一般练习题,还要根据教学目标设计一些综合性题目和开放型题目,可以培养学生思维的灵活性和深刻性,克服学生思维的呆板性,更主要的是能激发学生求知的欲望、学习数学的兴趣。本节课中,我围绕“三角形任意两边之和大于第三边”这一性质设计了较为简单的“练一练”,目的是让学生正确应用知识;又通过设计“算一算”,目的是让学生充分理解三角形三边的关系,会求已知两条边,第三条边最小可以是几;又设计了“挑战自己”题目,此题为后面用字母表示三角形三条边的关系奠定了基础(a+b>ca+c>bb+c>a);最后一题设计了“做一做”,这道题目有一定难度,能够综合培养学生深入理解知识、灵活运用知识、学会有序思考、发展逻辑思维等多方面作用。总归,环环相扣的练习能使学生熟练正确的掌握知识。总得来说,这节课也留下了许多缺憾和不足,主要表现在:

  1、学生动手操作、同伴互助不够充分,学生主观能动性没有调动起来,没能让学生充分体验到学习数学所带来的乐趣;

  2、让学生总结“三角形三边的关系”时,学生尽管能说出“任意”两边之和大于第三边就能围成三角形,但在这个环节中我给学生说的机会不多,没能让更多的学生尝试说一说;

  3、在分小组探讨“三角形三边的关系”性质时,由于担心耗时过多,怕完成不了后面的练习题目,没能放手让学生大胆、自主地探索三角形三边的'关系;

  4、本节课我的数学语言不够精准,说得有点儿多,显得啰嗦。

12、《三角形三边的关系》教学反思

  《三角形三条边之间的关系》是人教版小学数学四年级下册第五单元62页的内容。本节课的设计,无论从教学内容的处理、教学方法的选择,还是教师角色的转变,学习方式的变革方面,都做了一些有益的尝试和探索,主要有以下几点:

  一、尊重学生的认知规律,合理运用教材资源。

  本节课是在认识了什么是三角形的基础上进行教学的。从实验入手,让学生通过动手围一围小棒,看是否能围成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形三边之间的特殊关系。这样教学符合学生的认知规律,即增加了兴趣,又使学生积累了大量的操作经验和研究经验。

  二、引领学生自主探究,注重解决问题策略的指导。

  首先,借助复习什么是三角形,提出一个值得大家去思考和研究的问题“用三根小棒一定都能围成三角形吗?”通过实验发现两边之和小于第三边时围不成,而两边之和大于第三边时能围成三角形。继而引发学生大胆猜测:两边之和等于第三边时能围成吗?通过操作验证,发现不能。只有在两边之和大于第三边时才能围成。有意识的让学生经历研究解决问题的一般过程,对学生来说这是一种技能的积累、经验的积累。

  三、密切联系生活实际,激发学生学习兴趣。

  在这节课的练习中,利用学生的生活经验,设计了一个学生熟悉的情景,让学生有一种亲切感,激发了学生的学习兴趣。另外,让学生用本节课所学的知识去解决生活当中的数学问题,使学生感受到了数学不是凭空而来的,它是生活的需要。

  总之,设计意图是非常好的,但是在实际教学中也出现了一些问题,比如:提供给学生的学具(吸管)有些软,剪成3段后围三角形需要用手不断调整,如果再给一段铁丝让学生把三段穿进去,去折三角形,便于固定,效果会更好。

相关文章

推荐文章