教案

《解简易方程的巩固练习》小学数学教案一等奖

2023-07-15 19:22:10

  《解简易方程的巩固练习》小学数学教案一等奖

《解简易方程的巩固练习》小学数学教案一等奖

1、《解简易方程的巩固练习》小学数学教案一等奖

  教学内容:

  人教版第九册第102页练习二十五的习题。

  教学目标:

  1、通过练习,进一步理解和掌握ax±b=c这一类简易方程的解法,并能正确解简易方程。

  2、养成自觉检验的良好习惯。

  3、培养分析推理能力和思维的灵活性,提高解方程的能力。

  教学重点:

  进一步理解和掌握ax±b=c这一类简易方程的解法。

  教学难点:

  能正确解简易方程。

  教学过程:

  一、复习温顾。

  1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

  8×5+3x=70

  2、把下列解方程和检验过程补充完整。

  5x-3.7=8.5

  解:5x=8.5○()

  ()=12.2

  x=()○()

  x=2.44

  检验:把x=2.55代入原方程,

  左边=5×()-3.7=()

  右边=()

  左边○右边

  所以x=2.55是原方程的解。

  8x-4×14=0

  解:8x-()=0

  ()=56

  ()=56÷8

  x=()

  检验:把x=()代入原方程,

  左边=()×()-4×14=()

  右边=0

  左边○右边

  所以x=()是原方程的解。

  3、解下列方程:

  ⑴6x=42

  ⑵6x+35=77

  ⑶6x+5×7=77

  比较:这几道方程有什么相同和不同?解题后有什么体会?

  (这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

  二、巩固练习。

  1、可以把5x看作减数的是方程()。

  A.5x-6=20B.30+5x=75C.30-5x=5D.5x÷3=20

  2、2x在下列方程中可以看作什么部分数?

  ①2x+2.5=32.5()②2x-30=60()③2x-3×5=45()

  ④2x×7=42()⑤30×2-2x=12()⑥2x÷12=35()

  3、不解方程,你能判断下列方程的解是否正确吗?说说你的'方法。

  ①7x+15=120的解是x=15。()

  ②5x-3×6=22的解是x=9。()

  ③6x÷5=12的解是x=15。()

  ④12×5-3x=30的解是x=10。()

  4、解下列方程。(也可以选择第2题的方程其中3题)

  4x-7.2=10

  0.4(x-5)=16

  1.2x+0.16÷0.2=3.2

  5、列出方程并求方程的解。

  8与5的积减去一个数的4倍,差是20,这个数是多少?

  以上各题4人小组独立完成后,先交流订正,再集体订正。

  第4、5题,要求做错的题目,订正在练习纸的右栏。

  三、错题分析。

  1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

  2、出示常见的错题。

  观察下列各题的解方程是否正确,不正确的指出错处。

  7x-3.5=17.5

  解:x-3.5=17.5÷7

  x-3.5=2.5

  x=2.5+3.5

  x=6

  7x-3.5=17.5

  解:x=17.5+3.5

  x=21

  7x-3.5=17.5

  解:x=17.5+3.5

  7x=21

  x=21÷7

  x=3

  2x+4×3=48

  解:2x=4×3

  2x=12

  2x=48-12

  2x=36

  x=36÷2

  x=18

  四、拓展练习。

  1、根据方程24×6-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

  情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?

  2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

  ①6x+5×7=70+7

  ②2×3x+5×7=70+7

  ③(3+2x)×2=30

  3、如果2x+4=16,那么4x+8=()

  4、⑴x等于什么数时,3x-9的值等于12?

  ⑵x等于什么数时,3x-9的值大于12?

  五、复习小结。

2、《解简易方程的巩固练习》小学数学教案一等奖

  教学内容:

  人教版第九册第102页练习二十五的习题。

  教学目标:

  1、通过练习,进一步理解和掌握ax±b=c这一类简易方程的解法,并能正确解简易方程。

  2、养成自觉检验的良好习惯。

  3、培养分析推理能力和思维的灵活性,提高解方程的能力。

  教学重点:

  进一步理解和掌握ax±b=c这一类简易方程的解法。

  教学难点:

  能正确解简易方程。

  教学过程:

  一、复习温顾。

  1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

  8×5+3x=70

  2、把下列解方程和检验过程补充完整。

  5x-3.7=8.5

  解:5x=8.5○()

  ()=12.2

  x=()○()

  x=2.44

  检验:把x=2.55代入原方程,

  左边=5×()-3.7=()

  右边=()

  左边○右边

  所以x=2.55是原方程的解。

  8x-4×14=0

  解:8x-()=0

  ()=56

  ()=56÷8

  x=()

  检验:把x=()代入原方程,

  左边=()×()-4×14=()

  右边=0

  左边○右边

  所以x=()是原方程的解。

  3、解下列方程:

  ⑴6x=42

  ⑵6x+35=77

  ⑶6x+5×7=77

  比较:这几道方程有什么相同和不同?解题后有什么体会?

  (这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

  二、巩固练习。

  1、可以把5x看作减数的是方程()。

  A.5x-6=20B.30+5x=75C.30-5x=5D.5x÷3=20

  2、2x在下列方程中可以看作什么部分数?

  ①2x+2.5=32.5()②2x-30=60()③2x-3×5=45()

  ④2x×7=42()⑤30×2-2x=12()⑥2x÷12=35()

  3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。

  ①7x+15=120的解是x=15。()

  ②5x-3×6=22的解是x=9。()

  ③6x÷5=12的解是x=15。()

  ④12×5-3x=30的解是x=10。()

  4、解下列方程。(也可以选择第2题的`方程其中3题)

  4x-7.2=10

  0.4(x-5)=16

  1.2x+0.16÷0.2=3.2

  5、列出方程并求方程的解。

  8与5的积减去一个数的4倍,差是20,这个数是多少?

  以上各题4人小组独立完成后,先交流订正,再集体订正。

  第4、5题,要求做错的题目,订正在练习纸的右栏。

  三、错题分析。

  1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

  2、出示常见的错题。

  观察下列各题的解方程是否正确,不正确的指出错处。

  7x-3.5=17.5

  解:x-3.5=17.5÷7

  x-3.5=2.5

  x=2.5+3.5

  x=6

  7x-3.5=17.5

  解:x=17.5+3.5

  x=21

  7x-3.5=17.5

  解:x=17.5+3.5

  7x=21

  x=21÷7

  x=3

  2x+4×3=48

  解:2x=4×3

  2x=12

  2x=48-12

  2x=36

  x=36÷2

  x=18

  四、拓展练习。

  1、根据方程24×6-x=80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

  情景:学校食堂买来6袋大米,每袋()千克,用去了一些,还剩()千克,()多少千克大米?

  2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

  ①6x+5×7=70+7

  ②2×3x+5×7=70+7

  ③(3+2x)×2=30

  3、如果2x+4=16,那么4x+8=()

  4、⑴x等于什么数时,3x-9的值等于12?

  ⑵x等于什么数时,3x-9的值大于12?

  五、复习小结。

3、《解简易方程的巩固练习》小学数学教案一等奖

  教学内容:人教版第九册第102页练习二十五的习题。

  教学目标:

  1、通过练习,进一步理解和掌握a x±b = c这一类简易方程的解法,并能正确解简易方程。

  2、养成自觉检验的良好习惯。

  3、培养分析推理能力和思维的灵活性,提高解方程的能力。

  教学重点:进一步理解和掌握a x±b = c这一类简易方程的解法。

  教学难点:能正确解简易方程。

  教学过程:

  一、复习温顾。

  黑笔

  黑笔

  黑笔

  黑笔

  黑笔

  红笔

  红笔

  红笔

  8枝  8枝  8枝  8枝  8枝     x枝  x枝  x枝

  一共70枝

  1、根据下面的情景列方程并求方程的解,结合情景说说怎样解方程,每一步算出什么。

  黑笔的支数

  红笔的支数

  共买的支数

  8×5  +  3 x =    70

  2、把下列解方程和检验过程补充完整。

  5 x-3.7 =8.5

  解:  5 x=8.5○(   )

  (  )=12.2

  x =(  )○(  )

  x =2.44

  检验:把x =2.55代入原方程,

  左边=5×(  )-3.7=(   )

  右边=(   )

  左边○右边

  所以x =2.55是原方程的解。

  8x-4×14 =0

  解:8x-(  )=0

  (  )=56

  (  )=56÷8

  x =(  )

  检验:把x =(  )代入原方程,

  左边=(  )×( )-4×14=(   )

  右边=0

  左边○右边

  所以x =(  )是原方程的解。

  3、解下列方程:

  ⑴ 6 x =42

  ⑵ 6 x +35=77

  ⑶ 6 x +5×7=77

  比较:这几道方程有什么相同和不同?解题后有什么体会?

  (这几道题方程的解都是一样的,后几道方程都是由第一道方程演变过来的,每一道方程都比前一道要复杂,解题步骤也相应地增多。体会:再复杂的方程只要解题方法正确,都能化成一般简单的形式。)

  二、巩固练习。

  1、可以把5 x看作减数的是方程(   )。

  A.5 x-6=20   B.30+5 x =75   C. 30-5 x =5   D. 5 x÷3=20  2、2x在下列方程中可以看作什么部分数?

  ①2x+2.5=32.5(    )   ②2x-30=60(    )  ③2x-3×5=45(    )

  ④2x×7=42(     )   ⑤30×2-2x=12(    )  ⑥2x÷12=35(    )

  3、不解方程,你能判断下列方程的解是否正确吗?说说你的方法。

  ①7 x+15=120的解是x =15。   (   )

  ②5 x -3×6=22的解是x =9。  (   )

  ③6 x÷5=12的解是x =15。    (   )

  ④12×5-3 x =30的'解是x =10。 (   )

  4、解下列方程。(也可以选择第2题的方程其中3题)

  4 x-7.2=10

  0.4(x-5)=16

  1.2 x+0.16÷0.2=3.2

  5、列出方程并求方程的解。

  8与5的积减去一个数的4倍,差是20,这个数是多少?

  以上各题4人小组独立完成后,先交流订正,再集体订正。

  第4、5题,要求做错的题目,订正在练习纸的右栏。

  三、错题分析。

  1、出示学生作业中的错题,学生分析指出错误,并说说理由。(需批改作业时收集)

  2、出示常见的错题。

  观察下列各题的解方程是否正确,不正确的指出错处。

  7 x-3.5=17.5

  解:x-3.5 =17.5÷7

  x-3.5 =2.5

  x=2.5+3.5

  x=6

  7 x-3.5=17.5

  解:   x=17.5+3.5

  x=21

  7 x-3.5=17.5

  解:   x=17.5+3.5

  7x=21

  x=21÷7

  x=3

  2 x+4×3=48

  解:   2x=4×3

  2x=12

  2x=48-12

  2x=36

  x=36÷2

  x=18

  四、拓展练习。

  1、根据方程24×6-x =80创作情景(编题)或把下列情景补充完整。(视学生情况而定)

  情景:学校食堂买来6袋大米,每袋(  )千克,用去了一些,还剩(   )千克,(   )多少千克大米?

  2、解下列方程(可以只选择其中两道方程,快的同学可以全部做完)

  ①6 x+5×7=70+7

  ②2×3 x+5×7=70+7

  ③(3+2 x)×2=30

  3、如果2x+4=16,那么4x+8=(  )

  4、⑴x等于什么数时,3 x-9的值等于12?

  ⑵x等于什么数时,3 x-9的值大于12?

4、《解简易方程的巩固练习》小学数学教案一等奖

  教学目标:

  1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

  2、培养学生的分析能力应用所学知识解决实际问题的能力。

  3、帮助学生养成自觉检验的良好习惯。

  重点、难点:

  理解并掌握解方程的方法。

  教具准备:

  多媒体课件

  教学过程:

  一、 复习铺垫

  1、方程的意义

  师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

  生:含有未知数的等式叫方程。

  2、判断下面哪些是方程

  师:你能判断下面哪些是方程吗?

  (1)a+24=73 (2)4x<36+17 (3)234÷a>12

  (4)72=x+16 (5)x+85 (6)25÷y=0.6

  生:(1)(4)(6)是方程。

  师:你为什么说这三个是方程呢?

  生:因为它含有未知数,而且是等式。

  二、探究新知

  (一)理解方程的解和解方程

  1、看图写方程

  师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

  生:我知道杯子重100克,水重X克,合起来是250克。

  师:你能根据这幅图列出方程吗?

  生:100+X=250.

  2、求方程中的未知数

  师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

  生1:根据加减法之间的关系250-100=150,所以X=150.

  生2:根据数的组成100+150=250,所以X=150.

  生3:100+X=250=100+150,所以X=150.

  生4:假如在方程左右两边同时减去100,那么也可得出X=150.

  3、验证方程中的未知数,引出方程的解和解方程两个概念。

  师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

  生:对,因为X=150时方程左边和右边相等。

  师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

  学生自学后汇报。(板书)齐读两个概念。

  4、 辨析方程的解和解方程两个概念

  师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

  生:要看这个数能不能使方程左右两边相等。

  师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

  5、巩固练习,加深理解。

  师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

  生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

  生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

  (二)解简易方程

  1、复习等式的性质

  师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

  (1)如果5+3=8,那么5+3-3=8( )

  (2)如果50-13=37,那么50-13+13=50( )

  (3)如果a - 7=8,那么a - 7 + 7=8( )

  (4)如果X+9=45,那么X+ 9-9=45( )

  师:你是根据什么填空的?

  生:等式的性质。

  师:等式有什么性质呢?我们齐来说一遍。

  2、理解方程与等式的联系,引出课题。

  师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

  3、出示例1图,列出方程。

  师:图上画的是什么?你能列出方程吗?

5、《解简易方程的巩固练习》小学数学教案一等奖

  教学内容:

  教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。

  教学目的:

  使学生理解和初步学会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

  教学重点:

  会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

  教学难点:

  看图列方程,解答多步方程。

  教具准备:

  电教平台。

  教学过程:

  一、导入

  1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

  二、新课

  1.教学例2。

  出示小老鼠的问题:

  出示例2。先让学生自己读题,理解题意。

  教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?

  学生:含有未知数的等式叫做方程。

  教师:那么,要列方程就是要列出什么样的式子呢?

  学生:列出含有未知数的等式。

  教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

  学生:3x+4 = 40。

  教师:很好!谁能再说说这个方程表示的数量关系?

  学生:每盒彩色笔有x支,3盒彩色笔加上另外的'4支,一共是40支。

  教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?

  学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。

  这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。

  教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

  教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。

  2.教学例3。

  小猫提出的问题:

  教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

  教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 6.5。)

  教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。

  教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

  学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。

  教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。

  让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。

  教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。

  3.课堂练习。

  做教科书第109页下面“做一做”中的题目。

  先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。

  三、巩固练习(小兔子提出的问题)。

  1.做练习二十七的第1题第一行的两小题。

  先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。

  2.做练习二十七的第2题。

  教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。

  3.做练习二十七的第4题。

  让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)

  让学生独立做在练习本上,做完以后,集体订正。

  四、小结。

  出示课题:解简易方程。

6、五年级上册数学课程《解简易方程》的教学反思

  学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。

  比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

  不难看出,学生经历了把运算符号“+”看错成了“-”,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的'气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说“老师,我太紧张了”,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

7、五年级数学《解简易方程》教学反思

  解方程是数学领域里一块儿重要内容,在实际生活中,学会了列方程解决问题之后,很多不易用算术方法解答的习题,却能列方程很容易地解答出来,这足以说明列方程解决问题比算术法解决问题有非常明显的优越性。

  今年我教的是四年级,所用教材是青岛版五四制教材,第一单元就出现了解方程的内容,这部分教材我已经教学了四遍了,按理说这第五次教学这部分内容应该是易如反掌、挥洒自如,可是面对新教材的设计,我这个五年不教学高年级的老师却有了很大困惑----本教材的教学设计打破了传统的教学方法,而出乎我预料的则是借用天平演示使学生感悟“等式”,知道“等式两边都加上或减去都乘或除以同一个非零的数,等式仍然成立”这个规律,从而使学生进一步从真正意义上理解方程的意义,并学会运用等式的性质解方程。在以前几轮教材中,学习解方程之前都是先要求学生熟练掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差;减数=被减数-差;被除数=商×除数;除数=被除数÷商等关系式来求出方程的解,就连我自己小时候学习的解方程也都是根据加减、乘除法各部分之间的关系求方程的解的。

  开始我有些怀疑,以为只有青岛版五四制这个版本的教材利用了等式的性质教学的,于是急切的打开电脑找到各种版本的电子教材翻看这部分内容,却发现各种版本的教材设计思路是一样的,都是先学习等式的基本性质,接着再运用等式的基本性质解方程。为了彻底弄明白教材的编写意图,我又找到了这几个版本的教材所配套的教师教学用书翻看,新教材编写者大致都是这样解释的:长期以来,小学教学简易方程时,方程变形的依据总是加减、乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。看了这些内容,我才从思想上认可了这种设计思路,原来是为了使小学教学解方程和中学教学解方程的方法保持一致。

  理解了教材的设计意图,我开始强迫自己扭转老的教学思路。结果学生因为是初次接触,课堂上学习的竟是那样的有滋有味。但在后面的教学中,我渐渐发现采用等式的基本性质解方程给学生带来的竟然是局部的衔接,而存在局部的衔接对学生会更困难。从教材的编排上,整体难度虽然有所下降,却把用等式的性质解方程的方法单一化了。教材有意避开了形如a—X=b a÷x=b等类型的题目,不教学此类方程的求解方法,因为这类题目如果采用等式的性质来解非常麻烦。很显然采用等式的性质这种方法教学小学阶段的解方程目前存在着很大的局限性。

  但在教学列方程解决实际问题时,我们又不能避免学生在列方程时,依然出现形如a-x=b和a÷x=b的方程,特别是我们不能刻意地给学生强调不能列出X在后面做减数或做除数的方程,如果这样强调,学生心中会存在很大的疑惑,当学生列出这样的方程时,我们更头痛于学生求解能力的局限性。

  鉴于以上原因,课堂上我采用了新老教学思路结合使用的方法,先从教材中的新思路运用等式的基本性质教会孩子解较简单的方程,以便于日后初中学习时顺利接轨,同时对于初中学习“移项”也能顺利接收。但是面对现在四年级孩子的思维及接受能力,我再利用老教材的教学思路 “加减、乘除法各部分之间的关系”教给孩子解方程,至少这样能让我的学生会解各种类型的方程,特别是有利于孩子们列方程解决实际问题,他们不会再被“以乘代除”、“以加代减”的思路困扰着列方程,并且列出来还能顺利解这个方程。

  我个人以为,这样用新旧方法结合着教学,既能让学生为以后的学习做好衔接,形成绿色的通道,同时又体现解决同一问题方法、思路的多样性。通过学生的课堂作业,我发现教学效果出奇的好。

  通过解方程这部分内容的教学,我感到不论你的教龄有多长,你对同一教学内容教学了有几遍,每次教学都需要教师静下心来好好的研究教材教法,这样才能用最适合学生未来发展的方法去教学生。

8、五年级数学《解简易方程》教学反思

  长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反思。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接,教学反思《解简易方程教学反思》。通教材的老师也主张用等式的基本性质解方程。

  在我的教学过程中却出现了这样的问题 ,利用等式的基本性质解形如x+a=b与x—a=b, ax=b与x÷a=b一类的方程,学生方法掌握起来比较简单。但写起来比较繁琐。然而遇到a—x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四则运算,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦;但是在教学过程中我们不可避免地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各部分之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。

相关文章

推荐文章