六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
1、六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
教学目标:
1、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
教学重点:
掌握圆柱侧面积和表面积的计算方法。
教学难点:
运用所学的知识解决简单的实际问题。
教学准备:小黑板、圆柱的展开图
教学过程:
一、复习:
1.指名学生说出圆柱的'特征:
2.口头回答下面问题:
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
二、新课:
1.圆柱的侧面积:
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:22页第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
3. 理解圆柱表面积的含义:
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
4.教学例4
(1)出示例4。学生读题,明确已知条件
(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?
(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。
做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
三、巩固练习:
1.做第22页“做一做”。(求表面积包括哪些部分?)
2. 练习四第6题。
四、全课总结:
2、六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
教学目标:
1.通过练习让学生熟练运用转化和假设的策略来解决问题。
2.在不断练习和反思中,感受运用策略对于解决特定问题的价值。
3.通过这些策略的运用,了解解题方法的多样性,感受数学知识的魅力
教学过程:
一、谈话导入
在前面两节课的学习中我们主要运用了哪些策略来解决问题的?(转化和假设的策略)你们学会了吗?今天老师想考一考大家对这两个策略的运用情况,你们能接受挑战吗?(板书课题:解决问题的策略练习课)
二、练习应用
1.练习五第6题。
出示题目:要求先画图表示题意,再解答。
结合画的图进行分析:要求中、下层各放了多少本书?可以通过上层放书的数量100本,及所对应的`份数5,先求一份的量是多少,再求中、下层各放了多少本书。也可以引导学生从其他方面去思考,如把比转化成分数来解答。
2.练习五第7题。
结合图引导思考:根据货车的速度是客车的2∕3,可以想到相遇时货车行驶的路程也是客车行驶路程的2∕3,接着让学生在图上画一画,并解答。
3. 练习五第8题。
学生读题,出示右图
先在图中表示出第二、三堆的白子和黑子。
学生动手画,教师巡视、辅导。(学生可能在第二、三堆中把白子和黑子平均分,可让学生尽量避免这种特殊情况。)
结合图帮助学生理解:第二、三堆中的白子合起来正好是完整的一堆棋子,也就是60枚,再加上第一堆中白子的数量,这样就解决了这一问题。
4. 练习五第9题。
出示题目和表格。
先假设两种球分别投中的个数,再通过试验调整找出答案。
学生独立完成。
5. 练习五思考题。
让学有余力的学生自己思考,独立解答。
6.课外了解。(第32页你知道吗)
让学生了解我国古代的数学,渗透国情教育,并思考解决。
三、课堂小结
通过今天这节课的练习,你有了哪些新的收获?
使学生进一步巩固策略在特定问题中的应用。
四、课堂作业:基础训练
3、六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
1、圆柱
(1)圆柱的认识
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养学生细致的观察能力和一定的空间想像能力。
3、激发学生学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教具准备:学生准备圆柱,师自制圆柱体侧面展开纸,一张长方形纸。切好的圆柱形萝卜,水果刀。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的表面
(1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,测量哪一条最为简便?
老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时上的圆柱体闪烁边上的一条高.也可以用笔筒来教学圆柱的高。
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②学生再观察上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)
③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化成长方形?
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”,指出圆柱体的底面,侧面和高。
2.做第15页练习二的第2题找出圆柱体。
3.15页第3题,想一想,折一折,能得到什么图形。
3.做第15页练习二的第4题。教师行间巡视,对有困难的学生及时辅导。
四、布置作业
完成一课三练P15的1、2题。
(2)圆柱的表面积
教学目标:
1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。
教学重点:掌握圆柱侧面积和表面积的计算方法。
教学难点:运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1.指名学生说出圆柱的特征.
2.口头回答下面问题.(删掉)
(1)一个圆形花池,直径是5米,周长是多少?
(2)长方形的面积怎样计算?
板书:长方形的面积=长×宽.
3. 理解圆柱表面积的含义.
(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)
(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
公式:圆柱的表面积=圆柱的侧面积+底面积×2
二、圆柱的侧面积。
(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?
(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)
(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)
2.侧面积练习:练习七第5题
(1)学生审题,回答下面的问题:
① 这两道题分别已知什么,求什么?
② 计算结果要注意什么?
(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。
(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
4.教学例4
(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
② 底面积:3.14×(20÷2)2=314(平方厘米)
③ 表面积:1758.4+314=2072.4≈2080(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、巩固练习
1.做第14页“做一做”。(求表面积包括哪些部分?)
2. 练习七第6题
3.一台压路机的前轮是圆柱体,轮宽2米,直径1.2米。前轮转动一周,压路机的面积是多少平方米?
4.广告公司制作了一个底面直径是1.5米高2.5米的圆柱形灯箱。它的侧面最多可以张贴多大面积的海报?
5修建一个圆柱形沼气池,底面直径是3米,深2米。在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?
教学反思: 本节课以解决问题为主线,给学生创设探究的舞台。让学生动手操作,经历立立图形与平面图形之间“展--合--展”的转化过程,体会到“化曲为直”的思想在数学中的应用。练习注重把所学知识应用到生活中,让学生体会到生活中的问题不有死用数学公式来解决,要根据实际情况灵活解答,达到了学以致用的目的,提高了学生解决问题的能力。
(3)圆柱的体积
教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题(删掉)
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)
(4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正.
出示一组习题:
1一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?
2一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?
3一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?
3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?(
4、教学例6
(1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)
(1)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)
② 杯子的容积:50.24×10=502.4(c3)=502.4(l)
(2)学生见解例题,师补充
三、巩固练习
1.一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?
2.一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?
3.一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?
4钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。
板书:
圆柱的体积=底面积×高 V=Sh或V=πr2h
例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)
② 杯子的容积:50.24×10=502.4(c3)=502.4(l)
教学反思: 以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。
2、圆 锥
(1)圆锥的认识
教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。
教学目标:
1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。
2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。
3、培养学生的自主探索意识,激发学生强烈的求知欲望。
教学重点:掌握圆锥的特征。
教学难点:正确理解圆锥的组成。
教具准备:每人一个圆锥,师准备一个大的圆锥模型。
教学过程:
一、复习
1、圆柱体积的计算公式是什么?
2、圆柱的特征是什么?
二、新课
1、圆锥的认识 (直观感受观察讨论汇报)
(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。
(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)
(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)
(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)
2、小结
圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.
3、测量圆锥的高(组织学生分组进行测量)
由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。
(1)先把圆锥的底面放平;
(2)用一块平板水平地放在圆锥的顶点上面;
(3)竖直地量出平板和底面之间的距离。
4、教学圆锥侧面的展开图
(1)学生猜想圆锥的侧面展开后会是什么图形呢?
(2)实验来得出圆锥的侧面展开后是一个扇形。
三、课堂练习
1、做第24页“做一做”的题目。
让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。
2、练习四的第1题。
(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。
(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。
3.完成练习四的第2题。
补充习题:
1出示一组图形,辨认指出哪些是圆锥。
2出示一组图形,指出哪个是圆锥的高。
3出示一组组合图形,指出是由哪些图形组成的。
四、总结
关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?
教学反思:观察,,感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。
(2)圆锥的体积
教学内容:第25~26页,例2、例3及练习四的第3~8题。
教学目的:
通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。
借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。
通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。
教学重点:掌握圆锥体积的计算公式。
教学难点:正确探索出圆锥体积和圆柱体积之间的关系
教具准备:每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等
教学过程:
一、复习
1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
二、新课
1、教学圆锥体积的计算公式。
(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)
(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
组织学生实验分组合作学习:
(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?
(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)
(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )
学生叙述实验过程并总结结论,得出计算公式
板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,
字母公式:V= 1/3Sh
2、教学练习四第3题
(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?
(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。
3、巩固练习:完成练习四第4题。
4、教学例3.
(1)出示例3
已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)
三、巩固练习
1、做练习四的第7题。
学生先独立判断这三句话是否正确,然后全般核对评讲。
2、做练习四的第8题。
(1)引导学生学生思考回答以下问题:
① 这道题已知什么?求什么?
② 求圆锥的体积必须知道什么?
③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?
(2)让学生做在练习本上,教师巡视,做完后集体订正。
3、做练习四的第6题。
(1)指名学生先后回答下面问题:
① 圆柱的侧面积等于多少?
② 圆柱的表面积的含义是什么?怎样计算?
③ 圆柱体积的计算公式是什么?
④ 圆锥的体积公式是什么?
(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。
填空:
1、圆锥体体积的计算公式( )
2、等底等高的圆锥体是圆柱体体积的( ),圆柱体是圆锥体体积的( )。
3、等底等高的圆锥体体积是3立方厘米,圆柱体的`体积是( )。
4、体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高( )。
5、体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是( )。
6、等底等高的圆柱和圆锥,圆柱比圆锥的体积大( )。
判断:
1、圆柱体的体积一定比圆锥体的体积大 .
2、圆锥的体积等于和它等底等高的圆柱体的1/3.
3、圆锥体、正方体、长方体的体积都等于底面积×高。
4、圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。
补充习题:
1一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?
2一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?
3.一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?
4.在一个底面半径是10c的圆柱形水桶中装有水,把一 个底面半径为5c的圆锥形铁锤浸没在水中,水面上升了1c,试问铁锤的高是多少?
5.等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?
四、总结
这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?
教学反思: 从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。
整理和复习
教学内容:P29页第1-3题,完成练习五。
教学目标:
1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱与圆锥的特征
1、圆柱的特征
(1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?
(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)
2.圆锥的特征
(1)圆锥有哪几个部分?有什么特点?
(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)
(2)做第29页第1题
二、圆柱的表面积
(1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:
圆柱的侧面是指哪一部分?它是什么形状的?
(长方形或正方形)
圆柱的侧面积怎样计算?
(底面的周长×高)
为什么要这样计算?
(因为:底面的周长=长方形的长,高=长方形的宽)
(2)表面积是由哪几部分组成的?
(圆柱的侧面积+两个底面的面积)
(3)第29页第2题中求圆柱表面积的部分。
三、圆柱和圆锥的体积
1、圆柱的体积怎样计算?
(底面积×高)计算公式是怎样推导出来的?
(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)
2、圆锥的体积怎样计算?
(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3 Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
3、做第29页第2题
4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)
四、课堂练习
1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)
2、做练习五的第2题。
(1)学生审题后思考:求用多少彩纸是求圆柱的什么?
(2)指名板演,其他学生独立完成于课堂练习本上。
3、做练习五第5题。(可建议学生用方程解答)
一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、
4.有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?
5.右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)
4、六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
教学目标:
1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。
2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。
3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。
教具学具:
1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。
2、学生准备圆柱和圆锥实物。
3、教师准备长方形、直角三角形和半圆形、梯形的小旗。
教学过程:
一、创设情境 导入新课
做你来说我来猜的游戏。(就是中央电视台幸运52的记时抢答)随着屏幕上出现一组漂亮的几何图形,一名同学根据已有知识在描述着它的特征,另一名同学在认真的猜着,复习长方体和正方体。然后屏幕上出现圆柱体和圆锥体,由于学生还没学圆柱和圆锥。造成下面的学生无法猜出。此时学生自然会产生想深刻认识圆柱体圆锥的特征这一要求。
(同学们知道的真不少),这节课我们再来进一步了解圆柱和圆锥。
板书课题:圆柱和圆锥的认识。
二、教学新课
(一)认识圆柱、圆锥。
1、请同学们把自己准备的实物中的圆柱形物体和圆锥形物体分开。
2、仔细观察这些物体的形状,你能在纸上把他们画出来吗?谁愿意把自己的作品展示给大家看!
(贴出学生画的立体图)
教师:比较这几个同学的画法,你有什么想说的吗?
3、教师:刚才同学们通过观察、想象,画出圆柱和圆锥的立体图形。那么,你还能回想一下,生活中还有哪些物体的形状是圆柱或圆锥吗?
(二)探究圆柱和圆锥的特征。
圆柱的特征。
教师:通过刚才的交流,可以看出大家对圆柱、圆锥已经有了进一步的认识,那么接下来咱们再一起来探讨圆柱和圆锥的特征。
1、请你拿起桌上的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。
(教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到心中有数)。
2、集体交流:(学生交流时语言可能不严密,教师随时正确引导)
谁想把自己的发现告诉大家!学生交流,教师系统整理。
(1)圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。
(2)圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!
(3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?
认识圆锥的特征
教师:刚才同学们用不同的方法,发现了圆柱体的特征,那么大家能不能继续努力,来寻找圆锥体的特征呢?
1、拿出桌上的圆锥形实物,摸一摸、看一看、比一比,你又有什么发现?将自己的发现与同桌交流。
2、集体交流:
(1)圆锥的底面是一个圆形,圆锥的侧面是一个曲面。猜想一下,圆锥的侧面展开又会是什么图形?试试看!
(2)从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几条?
三、巩固练习
同学们通过努力,找到了圆柱和圆锥的特征。下面做一组练习题看看大家对刚才的知识掌握的`怎么样。请打开课本翻到48页,看第一题。
1、完成自主练习第1、2题。(注意倾听学生不同的意见,并让他们说出自己判断的理由。)
2、完成自主练习5。(利用课前准备的各种小旗)。
3、完成自主练习4,6。
四、实践。
1、让学生动手量圆柱、圆锥的高。
5、六年级下册数学第三单元圆柱与圆锥《圆柱的表面积》教案一等奖
教学目标
1、联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。
2、通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。
教学重、难点
理解并掌握圆柱、圆锥的基本特征。
教学过程
一、情境导入
1、教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?
最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的结论。
2、教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)
游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。
师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。
引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥
二、 探究圆柱和圆锥的特征
1、从生活的实景图中发现圆柱和圆锥。
从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。
2、小组合作学习,探究圆柱、圆锥的特征。
用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。
小组合作学习表格:研究对象
你们猜想它有哪些特征?
你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。
3、小组汇报反馈。
教师抓住几个关键点进行引导:
圆柱的特征:
(1)两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。
(2)认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。
圆锥的特征:
(1)由一个底面(圆)、一个侧面(曲面)组成。
(2)从圆锥的`顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。
小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?
4、说一说
课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。
说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。
6、六年级下册数学第二单元圆柱与圆锥教学反思
《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:
一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。
策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,V柱=3V锥
2、等底等积,3H柱=H锥
3、等高等积,3S柱=S锥
二、计算难度大,全是小数的加减乘除法计算,学生容易出错。
策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。
三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。
策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的`换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。
四、对题目的理解不到位,关于圆柱面积的计算经常出错。
策略:以题组的形式进行对比训练。
如:
1、给圆柱体模型刷油漆(求表面积)
2、圆柱形罐头贴商标(求侧面积)
3、厨师帽的材料(求表面积,但不计算下底面)
4、铁桶的材料(求表面积,但不计算上底面)
7、六年级数学下册《圆柱的表面积》教学反思
本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。
1、把握重点,突破难点,合理利用教材
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合
通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。
3、讲解与练习相结合
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的'知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
8、六年级数学下册《圆柱的表面积》教学反思
通过本节课的教学,使我深深地认识到同学们的学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极性参与的.有效方法。
在第一环节中,教师就创设了“饮料罐”情景,你想学什么?让学生自己提出问题,激发了学生创造的愿望。
第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。在课堂上多给学生发言展示的机会会极大地调动学生的潜在意识,使其情感上得到满足。
9、六年级下册数学 《圆柱的表面积》教学反思
圆柱体的表面积是学生学了长方形、正方形、平行四边形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到曲线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习圆柱体的表面积是学生学了长方形、正方形、平行四形、三角形和梯形等多种平面图形和长方体、正方体的表面积的基础上展开教学的。在学生从认识直线图形到线图形的过程中,不仅拓展了他们的知识面,丰富了学生空间与图形的学习经验,而且也给学生探索学习的方法注入了新的内容,并使得学生的空间观念得到了进一步的发展。
图形的学习对于学生来说是一个抽象的知识,只有结合生活,练习生活,让学生亲眼去看一看,亲手去做
一做,亲自去想一想,才能使之成为具体的、可接受的知识。本节课的教学设计分为三个层次。教学层次非常清晰。
第一层次:巩固上节所学《圆柱体的认识》的有关知识。学生通过观察实物,掌握圆柱体的底面、侧面和高,能正确地说出圆柱体的特征。
第二层次:推导圆柱体的侧面积和表面积计算公式。首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。通过实物观察和实验,使学生了解到这个长方形的长就是圆柱的底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形的面积公式很自然地推导出求圆柱体的侧面积公式。在会求侧面积这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求表面积的计算方法。使学生认识到立体转平面、形变量不变的辨证关系,培养学生们的观察、分析能力。
第三层次:针对本节所学知识设计了一些基本应用题。安排有:求圆柱的侧面积,求圆柱的表面积。是对圆柱侧面积和表面积公式的巩固。
郑老师极其注重数学知识生活化。一方面,注重从生活现象中提取数学知识,引入数学学习;另一方面在学生掌握了一定知识后,及时应用所学知识解决生活中的问题,也可以说数学的回归。比如练习中帽子、通风管表面积的计算等,我想如果给足时间,数学知识的回归在这些课上有更多的体现和应用。在六年级的课堂上,郑老师注重学生的探究活动是很明显的。以学生为中心,以学生的主动探究为主,
让学生敢想、敢说,从而主动的`去获取知识。同时,注重操作活动在图形学习中的地位。操作是学生认识图形、探究图形特征的重要途径,正是操作活动,学生的探索学习才能得到顺利展开,也正是操作活动,学生对有关数学知识的体验更加真切和深刻。最后,郑老师注重学生的思维表述。如果说操作活动能更强调知识的深刻性,
那么语言表述也就是说,就是对知识的梳理,知识的罗列,知识的系统话整理和知识的重组。
整堂课也有值得探讨的地方。语言的衔接稍有跳跃。课堂的连接语是课堂驾驭能力的表现,也反映了教师
设计课堂,生成课堂之间的一种应变。同时,这也与教师对于教学设计过程的熟悉程度有关。
10、六年级数学下册《圆柱的表面积》教学反思
圆柱圆锥是小学阶段几何教学最后一部分内容,圆柱表面积计算公式的探究非常适合学生自主探究。结合我校开展的提纲导学、自主探究活动,在本节课的教学中,我做了积极的尝试,效果非常不错。
首先,在新授课之前,我在去年去老师设计的道学提纲基础上稍作修改,形成了自己的导学提纲:
1、找一个圆柱形的物体,测量出它的底面直径和高(尽可能取整数,最多保留一位小数)
2、你能动手用彩色纸给这个圆柱形的物品穿上漂亮的外衣吗?动手试一试穿衣之前先思考:圆柱形物品有哪几个面?这些面都是什么形状?
3、把圆柱体的漂亮外衣脱下来,展开铺在桌面上观察:圆柱的外衣包含哪几部分?都是什么形状的?
4、你能算出用了多少彩色纸吗?注意观察:计算每部分的面积所需要的数据,就是圆柱的什么?
5、将你的计算过程试着写在反面。
把这个提纲发给学生,作为晚上的作业。因为学生有了圆的周长、圆的面积提纲导学探究经历和体验,对这次的探究比较有兴趣,加之家长的大力支持,全班同学都很认真很用心的进行了探究实践,不及给圆柱体穿的外衣漂亮、精致,而且认真按提纲的要求进行了观察、思考。
课堂上,学生饶有兴趣的互相展示了自己的作品,互相交流了自己的实践过程和操作中的乐事。在此基础上,孩子们争先恐后的举手发言,向全班同学展示自己的探究过程和发现。他们通过动手实践发现:给圆柱穿上外衣需要一块长方形的彩纸和两个同样大小的圆形,长方形那个彩纸的长等于圆柱地面周长,宽就是圆柱的高,而两个圆形就是圆柱的底面。孩子们互相交流,互相补充,很自然很直观地得到了圆柱的表面积计算公式,老师在这其中只起到了一个穿针引线的`作用,课堂气氛活跃,孩子们学的轻松愉快而且扎实。
不足的是,课后练习时,学生计算时由于数字不好算,常有为难思想,计算失误较多。还有的学生,列式时容易丢三落四。
通过本节课的教学,我以后会注意以下问题:
1、提纲导学法是很不错的方法,以后会根据课题继续尝试。
兴趣是最好的老师,这种作业学生比较喜欢,并且各种能力都会得到锻炼和提高;让学生能够按提纲步骤探究,避免了上课探究时小组活动中部分孩子的观众、听众角色,每个人都要自己亲手去做,提高了学生参与意识;家长参与了孩子的活动过程,关注了孩子的发展过程,有助于了解孩子的情况;
2、探究不能只重过程忽视结果
在学生探究得到结果后,更要重视知识的灵活运用,要注意不能让学生重过程轻结果,更要重视培养和发展学生运用所学知识解决实际问题的能力。解决问题时,比较复杂的问题,不要列综合算式,以免把本来会做的题弄错,提高正确率。
11、六年级下册数学《圆柱的表面积》的教师教学反思
为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:
一、打破传统教学,灵活合理地重组教材
“圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。
二、充分发挥教师主导与学生主体作用的统一。
本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。
1、直观演示与实际操作结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。
2、教师讲解与学生练习相结合
教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的`数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。
三、较好地培养了学生的创新意识
1、培养了学生的合作创新意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。
2、培养了学生的实践能力。
本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系
五、课后拓展、知识设计联系实际。
安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。
当然,在这节课的教学中,还存在着一些不足:
一、我整节课的板书安排不够合理,书写有些潦草!
二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。
三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。