教案

小学六年级数学教案一等奖圆柱与圆锥

2023-08-27 19:41:12

  小学六年级数学教案一等奖圆柱与圆锥

小学六年级数学教案一等奖圆柱与圆锥

1、小学六年级数学教案一等奖圆柱与圆锥

  单元总目标:

  1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。

  2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。

  3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。

  4、培养学生观察、比较、归纳的能力,以及空间观念。

  5、培养学生逻辑思考能力,有条理性的解决问题的能力。

  单元重点:圆柱体体积的计算

  单元难点:

  (1)圆柱体体积公式的推导过。

  (2)圆柱体侧面积、表面积的计算。

  (2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。

  突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。

  单元难点的剖析:

  (1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。

  原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。

  解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。

  (2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。

  (3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。

  原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。

  解决策略:

  (1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。

  (2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。

  (3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。

  (4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。

  单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。

  错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()

  分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。

  解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答

  (2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答

  分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。

  有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。

  (2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。

  (3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。

  分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的`获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。

  练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)

  课时安排:1、圆柱的认识31页至33页及例1

  2、圆柱的表面积33页例2--例3

  3、圆柱的体积公式的推导36页例4及补充一道已知R求V的例题。

  4、认识圆柱的容积37页例5

  5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10

  6、圆锥的认识41页

  7、圆锥的体积公式的推导42页至43页例1

  8、圆锥体积的应用43页例2

2、小学六年级数学教案一等奖圆柱与圆锥

  教学目标:

  1、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:小黑板、圆柱的展开图

  教学过程:

  一、复习:

  1.指名学生说出圆柱的'特征:

  2.口头回答下面问题:

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽.

  二、新课:

  1.圆柱的侧面积:

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:22页第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3. 理解圆柱表面积的含义:

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4.教学例4

  (1)出示例4。学生读题,明确已知条件

  (已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?

  (厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

  做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。

  5.小结:

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  三、巩固练习:

  1.做第22页“做一做”。(求表面积包括哪些部分?)

  2. 练习四第6题。

  四、全课总结:

3、小学六年级数学教案一等奖圆柱与圆锥

  1、圆柱

  (1)圆柱的认识

  教学目标:

  1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。

  2、培养学生细致的观察能力和一定的空间想像能力。

  3、激发学生学习的兴趣。

  教学重点:认识圆柱的特征。

  教学难点:看懂圆柱的平面图。

  教具准备:学生准备圆柱,师自制圆柱体侧面展开纸,一张长方形纸。切好的圆柱形萝卜,水果刀。

  教学过程:

  一、复习

  1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd)

  2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确)

  (1)半径是1米      (2)直径是3厘米

  (3)半径是2分米     (4)直径是5分米

  二、认识圆柱特征

  1.整体感知圆柱

  (1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……)

  (2)找找圆柱,请同学找出生活中圆柱形的物体。

  2.圆柱的表面

  (1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么?

  (2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)

  3.圆柱的高

  (1)一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关?

  (2)引导小结:水柱的高低和水柱的高有关.

  (3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)

  (4)讨论交流:圆柱的高的特点。

  ①装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?

  ②初步感知:面对圆柱的高,你想说些什么?

  归纳小结并板书:圆柱的高有无数条,高的长度都相等。

  ③深化感知:面对这数不清的高,测量哪一条最为简便?

  老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时上的圆柱体闪烁边上的一条高.也可以用笔筒来教学圆柱的高。

  4.圆柱的侧面展开(例2)

  (1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.

  (2)寻求发现.展开的长方形的长和宽与圆柱的关系.

  ①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  ②学生再观察上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。)

  ③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  (3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。

  ①讨论:平行四边形能否通过什么方法转化成长方形?

  ②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?

  ③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形.

  三、巩固练习

  1.做第11页“做一做”,指出圆柱体的底面,侧面和高。

  2.做第15页练习二的第2题找出圆柱体。

  3.15页第3题,想一想,折一折,能得到什么图形。

  3.做第15页练习二的第4题。教师行间巡视,对有困难的学生及时辅导。

  四、布置作业

  完成一课三练P15的1、2题。

  (2)圆柱的表面积

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

  教学重点:掌握圆柱侧面积和表面积的计算方法。

  教学难点:运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1.指名学生说出圆柱的特征.

  2.口头回答下面问题.(删掉)

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽.

  3. 理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  二、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题:

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  4.教学例4

  (1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ① 侧面积:3.14×20×28=1758.4(平方厘米)

  ② 底面积:3.14×(20÷2)2=314(平方厘米)

  ③ 表面积:1758.4+314=2072.4≈2080(平方厘米)

  5.小结:

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

  三、巩固练习

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2. 练习七第6题

  3.一台压路机的前轮是圆柱体,轮宽2米,直径1.2米。前轮转动一周,压路机的面积是多少平方米?

  4.广告公司制作了一个底面直径是1.5米高2.5米的圆柱形灯箱。它的侧面最多可以张贴多大面积的海报?

  5修建一个圆柱形沼气池,底面直径是3米,深2米。在池的内壁与下底面抹上水泥,抹水泥部分的面积是多少平方米?

  教学反思: 本节课以解决问题为主线,给学生创设探究的舞台。让学生动手操作,经历立立图形与平面图形之间“展--合--展”的转化过程,体会到“化曲为直”的思想在数学中的应用。练习注重把所学知识应用到生活中,让学生体会到生活中的问题不有死用数学公式来解决,要根据实际情况灵活解答,达到了学以致用的目的,提高了学生解决问题的能力。

  (3)圆柱的体积

  教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:掌握圆柱体积的计算公式。

  教学难点:圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(演示将圆柱细分,拼成一个长方体)

  反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

  长方体和圆柱体的底面积和体积有怎样的关系?

  学生说演示过程,总结推倒公式。

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题(删掉)

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正.

  出示一组习题:

  1一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?

  2一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?

  3一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?

  3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?(

  4、教学例6

  (1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)

  (1)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)

  ② 杯子的容积:50.24×10=502.4(c3)=502.4(l)

  (2)学生见解例题,师补充

  三、巩固练习

  1.一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?

  2.一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?

  3.一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?

  4钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。

  板书:

  圆柱的体积=底面积×高 V=Sh或V=πr2h

  例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(c2)

  ② 杯子的容积:50.24×10=502.4(c3)=502.4(l)

  教学反思: 以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。

  2、圆 锥

  (1)圆锥的认识

  教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

  教学目标:

  1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

  2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

  3、培养学生的自主探索意识,激发学生强烈的求知欲望。

  教学重点:掌握圆锥的特征。

  教学难点:正确理解圆锥的组成。

  教具准备:每人一个圆锥,师准备一个大的圆锥模型。

  教学过程:

  一、复习

  1、圆柱体积的计算公式是什么?

  2、圆柱的特征是什么?

  二、新课

  1、圆锥的认识 (直观感受观察讨论汇报)

  (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

  (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

  (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

  (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

  2、小结

  圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

  3、测量圆锥的高(组织学生分组进行测量)

  由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

  (1)先把圆锥的底面放平;

  (2)用一块平板水平地放在圆锥的顶点上面;

  (3)竖直地量出平板和底面之间的距离。

  4、教学圆锥侧面的展开图

  (1)学生猜想圆锥的侧面展开后会是什么图形呢?

  (2)实验来得出圆锥的侧面展开后是一个扇形。

  三、课堂练习

  1、做第24页“做一做”的题目。

  让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

  2、练习四的第1题。

  (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

  (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

  3.完成练习四的第2题。

  补充习题:

  1出示一组图形,辨认指出哪些是圆锥。

  2出示一组图形,指出哪个是圆锥的高。

  3出示一组组合图形,指出是由哪些图形组成的。

  四、总结

  关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

  教学反思:观察,,感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。

  (2)圆锥的体积

  教学内容:第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:掌握圆锥体积的计算公式。

  教学难点:正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  组织学生实验分组合作学习:

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

  (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3×圆柱的体积=1/3 ×底面积×高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

  (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

  3、巩固练习:完成练习四第4题。

  4、教学例3.

  (1)出示例3

  已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

  (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

  (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

  三、巩固练习

  1、做练习四的第7题。

  学生先独立判断这三句话是否正确,然后全般核对评讲。

  2、做练习四的第8题。

  (1)引导学生学生思考回答以下问题:

  ① 这道题已知什么?求什么?

  ② 求圆锥的体积必须知道什么?

  ③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

  (2)让学生做在练习本上,教师巡视,做完后集体订正。

  3、做练习四的第6题。

  (1)指名学生先后回答下面问题:

  ① 圆柱的侧面积等于多少?

  ② 圆柱的表面积的含义是什么?怎样计算?

  ③ 圆柱体积的计算公式是什么?

  ④ 圆锥的体积公式是什么?

  (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

  填空:

  1、圆锥体体积的计算公式( )

  2、等底等高的圆锥体是圆柱体体积的(  ),圆柱体是圆锥体体积的(  )。

  3、等底等高的圆锥体体积是3立方厘米,圆柱体的`体积是(       )。

  4、体积和底面积相等的圆柱与圆锥,圆柱高5厘米,圆锥高(    )。

  5、体积和高相等的圆柱与圆锥,圆锥底面积15平方厘米,圆柱底面积是(     )。

  6、等底等高的圆柱和圆锥,圆柱比圆锥的体积大(      )。

  判断:

  1、圆柱体的体积一定比圆锥体的体积大 .

  2、圆锥的体积等于和它等底等高的圆柱体的1/3.

  3、圆锥体、正方体、长方体的体积都等于底面积×高。

  4、圆锥的高是圆柱高的3倍,且底面积相等,那么他们的体积相等。

  补充习题:

  1一堆煤成圆锥形,底面半径是1.5米,高是1.1米。这堆煤的体积是多少?如果每立方米的煤重约1.4吨,这堆煤有多少吨?

  2一个圆锥形沙堆,底面直径是28.26平方米,高是2.5米用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?

  3.一堆圆锥形的煤体积是12立方米,底面积是6平方米,高是多少?

  4.在一个底面半径是10c的圆柱形水桶中装有水,把一 个底面半径为5c的圆锥形铁锤浸没在水中,水面上升了1c,试问铁锤的高是多少?

  5.等底等高的圆柱和圆锥,圆柱的体积比圆锥的体积多24立方分米,圆柱的体积是多少立方分米?

  四、总结

  这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

  教学反思: 从本节课的教学任务来看,主要是构建“圆锥的体积是等底等高的圆柱的体积的三分之一”这一概念的认识,而这一认识的形成,靠文字和观摩演示都是苍白无力的,它需要学生发自内心的需要,全身心的体验,使学生在实验中对自己的实验过程和结论进行对比和反思,悟出等底等高的必要性,从而明确圆锥的体积是等底等高的圆柱的体积的三分之一”的具体含义。

  整理和复习

  教学内容:P29页第1-3题,完成练习五。

  教学目标:

  1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

  2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

  教学重点:圆柱、圆锥表面积、体积的计算

  教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别

  教学过程:

  一、复习圆柱与圆锥的特征

  1、圆柱的特征

  (1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

  (圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)

  2.圆锥的特征

  (1)圆锥有哪几个部分?有什么特点?

  (是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

  (2)做第29页第1题

  二、圆柱的表面积

  (1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:

  圆柱的侧面是指哪一部分?它是什么形状的?

  (长方形或正方形)

  圆柱的侧面积怎样计算?

  (底面的周长×高)

  为什么要这样计算?

  (因为:底面的周长=长方形的长,高=长方形的宽)

  (2)表面积是由哪几部分组成的?

  (圆柱的侧面积+两个底面的面积)

  (3)第29页第2题中求圆柱表面积的部分。

  三、圆柱和圆锥的体积

  1、圆柱的体积怎样计算?

  (底面积×高)计算公式是怎样推导出来的?

  (把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)

  2、圆锥的体积怎样计算?

  (用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3 Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

  3、做第29页第2题

  4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

  四、课堂练习

  1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

  2、做练习五的第2题。

  (1)学生审题后思考:求用多少彩纸是求圆柱的什么?

  (2)指名板演,其他学生独立完成于课堂练习本上。

  3、做练习五第5题。(可建议学生用方程解答)

  一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、

  4.有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?

  5.右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)

4、小学六年级数学教案一等奖圆柱与圆锥

  教学目标:

  1、使学生认识圆柱和圆锥,掌握圆柱和圆锥的特征及各部分的名称。

  2、通过观察,认识圆柱、圆锥并掌握它们的特征,建立空间观念。

  3、能正确判断圆柱和圆锥体,培养学生观察、比较和判断等思维能力。

  教具学具:

  1、教师准备大小不同的圆柱和圆锥以及其他几种形体的实物及模型。

  2、学生准备圆柱和圆锥实物。

  3、教师准备长方形、直角三角形和半圆形、梯形的小旗。

  教学过程:

  一、创设情境 导入新课

  做你来说我来猜的游戏。(就是中央电视台幸运52的记时抢答)随着屏幕上出现一组漂亮的几何图形,一名同学根据已有知识在描述着它的特征,另一名同学在认真的猜着,复习长方体和正方体。然后屏幕上出现圆柱体和圆锥体,由于学生还没学圆柱和圆锥。造成下面的学生无法猜出。此时学生自然会产生想深刻认识圆柱体圆锥的特征这一要求。

  (同学们知道的真不少),这节课我们再来进一步了解圆柱和圆锥。

  板书课题:圆柱和圆锥的认识。

  二、教学新课

  (一)认识圆柱、圆锥。

  1、请同学们把自己准备的实物中的圆柱形物体和圆锥形物体分开。

  2、仔细观察这些物体的形状,你能在纸上把他们画出来吗?谁愿意把自己的作品展示给大家看!

  (贴出学生画的立体图)

  教师:比较这几个同学的画法,你有什么想说的吗?

  3、教师:刚才同学们通过观察、想象,画出圆柱和圆锥的立体图形。那么,你还能回想一下,生活中还有哪些物体的形状是圆柱或圆锥吗?

  (二)探究圆柱和圆锥的特征。

  圆柱的特征。

  教师:通过刚才的交流,可以看出大家对圆柱、圆锥已经有了进一步的认识,那么接下来咱们再一起来探讨圆柱和圆锥的特征。

  1、请你拿起桌上的圆柱,摸一摸、看一看、比一比,你有什么发现?将自己的发现与同桌交流。

  (教师在学生交流时,深入到学生中,倾听孩子不同的见解,做到心中有数)。

  2、集体交流:(学生交流时语言可能不严密,教师随时正确引导)

  谁想把自己的发现告诉大家!学生交流,教师系统整理。

  (1)圆柱的上下两个面是面积相等的圆,这两个圆面就叫做底面。

  (2)圆柱还有一个曲面,这个曲面叫做侧面。想一想,这个曲面展开会是什么形状?想个法子试一试!

  (3)上下两个底面之间的距离叫做圆柱的高。想一想,圆柱的高有多少条?

  认识圆锥的特征

  教师:刚才同学们用不同的方法,发现了圆柱体的特征,那么大家能不能继续努力,来寻找圆锥体的特征呢?

  1、拿出桌上的圆锥形实物,摸一摸、看一看、比一比,你又有什么发现?将自己的发现与同桌交流。

  2、集体交流:

  (1)圆锥的底面是一个圆形,圆锥的侧面是一个曲面。猜想一下,圆锥的侧面展开又会是什么图形?试试看!

  (2)从圆锥的顶点到底面圆心的距离是圆锥的高。想一想圆锥的高有几条?

  三、巩固练习

  同学们通过努力,找到了圆柱和圆锥的特征。下面做一组练习题看看大家对刚才的知识掌握的`怎么样。请打开课本翻到48页,看第一题。

  1、完成自主练习第1、2题。(注意倾听学生不同的意见,并让他们说出自己判断的理由。)

  2、完成自主练习5。(利用课前准备的各种小旗)。

  3、完成自主练习4,6。

  四、实践。

  1、让学生动手量圆柱、圆锥的高。

5、小学六年级数学教案一等奖圆柱与圆锥

  教学内容

  教材第18,19页的例1,完成第19页的练一练和练习五的第14题。

  教学目标

  1、使学生认识圆柱和圆锥的特征,能看懂圆柱、圆锥的平面图。

  2、认识圆柱和圆锥的底面、侧面和高,并会测量高。

  教学重点

  1、让学生从整体上体会圆柱和圆锥的特征,了解围成圆柱或圆锥的各个面。

  2、认识圆柱和圆锥的高,并会测量高。

  教学难点

  认识圆锥的高。

  教具准备:

  教师准备圆柱体、圆锥体的物体,让学生收集一些圆柱体、圆锥体的实物。同时让学生将教科书第125、127页上的图沿边剪下来做成圆柱体、圆锥体。

  一、激趣引新

  1、师出示准备的模型圆柱,圆锥,提问,这是什么形体?

  师指出:圆柱体简称圆柱,圆锥体简称圆锥。

  2、举例:你在生活中见过哪些物体的形状是圆柱,哪些物体的形状是圆锥?(学生举例)

  3、师出示挂图,提问,生活中的例子很多,你看这张图上哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  4、揭题:今天我们就来研究这样的直圆柱和直圆锥。(板书课题:圆柱和圆锥的认识)

  二、自主探究,认识圆柱和圆锥的特征。

  1、认识圆柱

  (1)谈话,请看挂图,刚我们看到的圆柱有大的,有小的,有高的,有矮的,还有这么扁的,同学们桌面上也有大小不一的圆柱,仔细观察这些圆柱,你发现这些大小不一的圆柱有什么共同点?(学生独立思考后同桌交流后自由发表意见,师根据学生回答适当板书)

  (2)验证发现:上下面是两个完全相同的圆

  刚才同学说上下两个面是完全相同的圆,请你想办法证明一下,这个猜想是否正确?

  学生可能:a把茶叶筒的盖头拿下来比划b用线绕c用尺亮圆的直径

  侧面是弯曲的:把你手中的圆柱摸一摸,滚一滚,你发现它的这个面与桌面有什么不同?侧面滚一滚,滚出一个什么形状?

  (3)师指出:这是沿着圆柱形物体的轮廓画下来的圆柱的平面图

  圆柱上下两个面叫做圆柱的底面(板书底面,图中标出底面)

  围成圆柱的曲面叫做圆柱的侧面

  圆柱两个底面之间的距离叫做圆柱的高(板书,在图中标出)

  提问:圆柱的高有多少条?它们之间有什么关系?(师出示装满牙签的牙签盒让学生体会)

  验证圆柱的高都相等:把圆柱放在桌角量高,变换角度量高,量出的结果一样吗?

  (4)练习:说说师手中的杯子,方便面碗是不是圆柱,为什么?指出自己手中圆柱的各部分名称,指出下列圆柱各部分名称

  2、认识圆锥

  (1)谈话:某些建筑物的顶部,吃的蛋筒,这些物体的形状都是圆锥体,请你观察这些圆锥,说说它们有什么共同点?(学生自由交流,师适当板书)

  有一个顶点,底面是一个圆形,侧面是一个曲面

  (2)看书对照你的发现是否正确

  (3)师指出:图锥的底面是一个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。(边说边在图上标出来)

  提问,圆锥的高有几条?

  滚动圆锥,你有什么发现?

  辨析,这是圆锥的高吗?那你认为怎样测量圆锥的高?师出示图。

  (4)指出你手中圆锥各部分名称。

  3、比较:观察圆柱和圆锥有什么不同之处?

  师可引导提问:圆柱和圆柱都有一个侧面,侧面都是一个曲面,为什么圆柱滚动侧面时与圆锥滚动侧面的感觉不一样?

  三、巩固练习

  1、练一练:判断哪些物体的形状是圆柱,哪些物体的形状是圆锥?

  2、练习五第二题,连一连。

  3、练习五第三题:先让学生根据题意转一转,想象一下,再交流。

  圆柱的底面半径与高与长方形小旗有什么关系?

  4、拿出硬纸做的圆柱和圆锥,想办法量出它们的底面直径和高,记录再自备本上。

6、六年级下册数学第二单元圆柱与圆锥教学反思

  《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:

  一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。

  策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,V柱=3V锥

  2、等底等积,3H柱=H锥

  3、等高等积,3S柱=S锥

  二、计算难度大,全是小数的加减乘除法计算,学生容易出错。

  策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。

  三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。

  策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的`换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。

  四、对题目的理解不到位,关于圆柱面积的计算经常出错。

  策略:以题组的形式进行对比训练。

  如:

  1、给圆柱体模型刷油漆(求表面积)

  2、圆柱形罐头贴商标(求侧面积)

  3、厨师帽的材料(求表面积,但不计算下底面)

  4、铁桶的材料(求表面积,但不计算上底面)

7、六年级数学上册《圆柱圆锥》教学反思

  “数学是思维的体操”,数学课堂是培养学生思维能力的主阵地。因此,教学中,教师常常把重心放在拓展学生思维的空间上,常常更多地关注解题方法的优劣、解题过程的繁简。计算则通常归于一句话:计算要细心,多练自然准确率就高啦。其实不然,某些计算的难度已经影响了思维的训练及效果,譬如人教版第十二册第二单元的“圆柱、圆锥”。这部分内容素以计算繁杂而成为教学中的一大令人头疼的章节,相信每一位经历过的教师都有同感。

  因为已知了这个教学难点,许多教师和我一样,会有意识地对这个难点进行突破,让学生把3.14×1到3.14×9的得数背下来,并指导学生如何运用背的结果。还练习了由3.14×1你还能想到哪些算式的结果,拓宽3.14×1到3.14×9计算结果的运用范围。但在教学圆柱的表面积、体积的计算时,学生还是错误百出。在订正过程中,有些学生因此对正确的列式产生了怀疑,甚至动摇了对学习这部分内容的信心。作为教师,面对这种状况,心里很不是滋味,不免对自己的“教”进行一番审视,有些方面还真需要改进。

  一.计算圆柱的侧面积、表面积、体积,圆锥的体积,如果用综合算式计算,算式有时很长,特别是半径或直径未知时。

  我以前较注重要求学生用综合算式来解答,这样对列式的正确与否一目了然。事实上这样要求不但增加了学生思维的难度,同时也增加了计算的难度。思维能力上的难度体现在根据公式求圆柱的表面积、体积时,有些条件没有直接告诉,需要先求出中间数。如已知底面直径和高,求圆柱的表面积,这里需要先求出底面周长与半径,再求出侧面积与底面积,最后再求出表面积。教师眼中比较简单的问题,对学生来说由于中间问题多而显得思维难度大,如果我们一开始认识不到,不能降低要求,帮助学生用分步列式的方法计算,无形中增加了学生的难度。教材中的例题就是分步列式,是有良苦用心的。更何况在解决实际问题时,还要考虑问题求的是侧面积、表面积、体积中的哪一种,如果求的是表面积,又应该是由哪些面组成的,是一个底,还是两个底,还是没有底。计算上的难度体现在这么长的一个算式中,如果其中一步列式有差错或一个数据算错,整个算式的结果就会算错。而对待错误,一般的学生特别是后进生很少去对这么长的算式进行整体反思,去改正列式中的'一个小错误,或把其中算错的那个数据进行修正,进而用适当微调的方式进行订正,而是全部推倒重算。算的步骤越多,错误的概率就越大,常常越订正错误越多,多次订正得不到正确结论,学生很容易烦燥,并丧失学习的信心。

  二、对3.14的处理要掌握巧妙的方法。

  一个问题中,3.14通常要重复计算多次,结果多是几位小数。如已知圆柱的底面直径是10厘米,高是15厘米,求圆柱的表面积.算式是10×3.14×15+(10÷2)×3.14×2。3.14要分别乘150与50,最后是两积相加。如果我们把3.14看成,在计算时先不与具体的数字进行计算,到最后统一处理,如上面这一题,如果我们这样算:,最后只要算200与相乘,那么只要乘一次3.14,这样就可以减少与3.14相乘的次数,也就减少了出现错误的可能性。因此,我鼓励学生把带入算式中计算,甚至允许如果题目结果没有提出得数保留的要求,最后的结果可以保留,让学生品尝把带入算式计算的好处。在以后的练习中,学生的学习效果出现了明显的好转,自信又回到了学生的身上,同时也培养了学生计算的兴趣及能力。

  三、关于圆锥的体积计算中三分之一的处理。

  圆锥的体积等于与它等底等高的圆柱体积的,计算圆锥的体积有几种公式:,首先看能否与其它数约分,如已知圆锥的底面积是20.5平方厘米,高是6厘米,体积是×20.5×6,可先把与6约分。如已知圆锥的底面半径是9厘米,高是5厘米,体积是×3.14×9×9×5,可先与9约分。若无法约分,就先算出其它各数的积,最后再除以3。这样尽量减少小数计算的次数,降低出错的可能性。

  从圆柱、圆锥的表面积、体积的教学,我想到了我们教师如何对待学生计算过程中出现的差错。学生在学习过程中出现差错是很正常的。对待学生的计算错误,教师首先保持一个正确的心态,适当提醒学生是应该的,过分从学生身上查找原因,过分责怪学生不认真、不仔细、习惯不好等等,不但不会对解决问题产生丝毫的帮助,反而会使学生失去数学学习的兴趣。教师应充分吃透教材,准确把握教材的意图,善于观察学生,从学生学的过程寻找适合的教法,找到帮助学生克服学习困难的金钥匙。

8、小学低年级数学六年级下册《圆柱的认识》教学反思

  圆柱在小学低年级学生就有所接触,是继五年级长方体、正方体之后的一种新的立体图形。因其在建筑业、在日常生活中应用广泛,这是一个将数学知识运用于实际生活的典型。因此这节课的学习显得尤为必要,使学生明白数学知识来源于生活,又运用于生活,提高学生学习的兴趣。

  上课伊始,图片显示建筑物,日常生活用品中的圆柱形,给学生一个震撼,了解圆柱在人们生活中的重要性。在实际生活中,虽然圆柱形的物体很多,学生对圆柱的认识都是感性认识,而课堂教学是对圆柱体进行理性的认识。学生对新知识是好奇的,所以在教学时,动手操作和探索研究,自我发现和掌握圆的柱的基本特征,是本节课的主题。过后组织学生观察、触摸、猜测、操作验证、巩固、应用这几个环节组成。组织学生通过观察手中的圆柱实物,初步感知圆柱特征,是直观感知层面的活动中,对圆柱特征有一个较为完整的把握。再把圆柱放在平面上来了解,由实践上升到理论的层次,培养了学生的动手操作能力和空间想象能力、抽象思维能力。

  圆柱侧面展开的学习我将它作为本节课的`重点内容,它将影响圆柱侧面积和表面积的学习。我上网查阅了不少资料,关于圆柱侧面剪开的教学,没有象以前的课堂中,将包装纸剪开后成四种不同的形状长方形、正方形、平行四边形、不规则的图形作为教学的重点,即使出现了这么多形状,只是口头带过去了。一般同学不会的,在圆柱体的特征教学中它能起到什么作呢?不管怎么剪成什么样不都要将它转化成长方形来研究吗?因此,教学中简化这一过程,当学生剪开侧面出现了长方形。正方形,而没出现平行四边形和不规则的图形时,我用课件动画展示了侧面转化成长方形,以及底面圆与长方形之间的关系的过程。认识到长方形与圆柱侧面积之间的关系。把教学重难点化繁为简,化抽象为具体,并把“观察、猜想、操作、发现”的方法贯穿始终,既加深了学生对圆柱各部分名称和特征的认识,又有效的培养了学生的逻辑思维能力。

  练习题设计紧紧围绕新知展开。我设计了针对性练习和发展性练习,在形式、难度、灵活性上都有体现。判断题有利于检查学生对基础知识的掌握情况,最后一题让学生动手操作,进一步加深对知识的了解。

  整节课的设计充分体现了新课标的理念,如学习方式:自主、探究、合作,评价多元等等,但课中教师设计的环节太过朴实,缺乏有力的感召力,还必须在创设生动活拨的场景方面下工夫,教学环节太理性化,不太适合小学生的特点,语言方面要求少而精,富有童趣。只有在不断的反思中去改正才有极大的收获。

9、小学六年级数学下册《圆锥的体积》的教学反思

  让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。

  就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的快乐,使他们懂得他们也可以通过玩掌握到数学的`知识。

  让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。

  出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。

10、六年级圆柱与圆锥教学反思

  《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:

  一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。

  策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,V柱=3V锥

  2、等底等积,3H柱=H锥

  3、等高等积,3S柱=S锥

  二、计算难度大,全是小数的加减乘除法计算,学生容易出错。

  策略:加强小数的计算训练,特别是多进行N×3.14的训练,提高计算准确率。

  三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。

  策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的.10进制,要特别注意纠正。

  四、对题目的理解不到位,关于圆柱面积的计算经常出错。

  策略:以题组的形式进行对比训练。

  如:

  1、给圆柱体模型刷油漆(求表面积)

  2、圆柱形罐头贴商标(求侧面积)

  3、厨师帽的材料(求表面积,但不计算下底面)

  4、铁桶的材料(求表面积,但不计算上底面)

相关文章

推荐文章