教学反思

《表面积的变化》教学片段及反思

2023-06-16 19:22:11

  《表面积的变化》教学片段及反思

《表面积的变化》教学片段及反思

1、《表面积的变化》教学片段及反思

  片段一:

  师:请你用两个完全相同的小正方体拼成一个长方体。(学生动手操作)

  师:操作后思考:

  ①拼成的长方体体积与原来两个正方体体积和有没有变化?

  ②拼成的长方体表面积与原来两个正方体的表面积和,有什么变化?

  学生交流,教师板书:重叠1次,表面积减少2个面。

  师:那么重叠2次,表面积会减少几个面?重叠3次、4次呢?

  这样的结论是不是正确呢,请你先拼一拼,再观察,然后把表格填完整。

  正方体的个数 2 3 4 5

  拼接的次数

  减少了原来几个面的面积

  交流讨论:你从中发现了什么规律?

  生1:拼接的次数乘2就等于减少的面积。

  生2:正方体的个数减去1就等于拼接的次数。

  生3:正方体的个数减去1的差乘2就等于减少的面积。

  生4:就是这些小正方体必须排成一列。

  师生共同小结:(正方体的个数-1)2=减少面的个数

  反思:

  学生答案是五花八门,有些甚至出人意料,但可以看出他们都在认真思考,积极动脑。由此看来,学生需要老师的鼓励,需要充分展示自己才华的舞台。想想自己平时在这方面可能做的还不够,今后应每堂课给予学生这样的机会,那样必然会出现精彩纷呈的局面。

  片段二:

  出示题目:把10个火柴盒包成一包,怎样包装最省材料?

  师:题目问哪一种包装方法最省料?实际上就是比的什么?

  生:比哪一种长方体的表面积最小。

  师:怎样判别拼成的长方体的表面积是大还是小?

  生1:数一共减少了多少个面,减少的面的面积大而且要尽量的多。

  生2:数外面还有多少个面。

  生3:量一量,算出表面积。

  师:我们先不用量量算算的方法,而要凭眼睛去看看数数,现在用10个火柴盒拼成的大长方体,你们觉得是数减少的面容易,还是数外面留下的面容易。

  生:数外面的容易。

  师:现在手中只有10个火柴盒,一次摆一种,每摆一种,就记下三种面的个数,填在表中。

  师:请同学们四人一组,摆出不同的长方体,并把每次大中小三种面的个数情况记下来。最后进行比较,看看哪一种摆法表面积最小。

  生:自由活动,摆、记、比。

  小组交流,形成一些判别的规律、掌握比较技巧。

  师:刚才有人提出量量算算的方法。正好刚才有几种摆法,大家一开始对它们表面积的大小有疑问,现在请你算算它们的表面积,验证一下我们的结论对不对?

  学生计算,验证刚才的想法。

  反思:

  如果一开始就让学生进行测量,计算出表面积,学生一下子就能找出怎样包装最省材料,但是就失去了今天学习表面积的变化的意义。这个活动是在前面学生初步感知表面积变化的`规律的基础上,引导学生应用数学知识解决生活中的的实际问题,让学生进一步巩固所学的数学知识,同时在解决实际问题的过程中体会数学的应用价值。为了避免活动的盲目性,让学生进行讨论,形成一定的共识,再开展活动,进行研究,提高效率。最后,通过计算,让学生进一步确信最佳的包装方法。这样通过有效的操作,从而提高了学习的效率,促进了学生思维的发展。

2、《梯形的面积》小学数学教学片段反思

  片段一:关注学生思考方法的多样化。

  在讨论梯形的面积计算公式的时候,如,将梯形转化成其他图形的时候,各个小组发挥集体的智慧,想出了很多种方法。

  师:下面我们一起来交流一下各小组的方法。

  生1:我们小组用两个完全一样的梯形拼成一个平行四边形,平行四边形的面积我们以前学过,所以这是我们小组想的。

  师:说得真好,哪个小组还有不同的想法?

  生2:我们小组通过将梯形沿着对角线剪下来,分成两个三角形。

  师:哪个小组的同学愿意起来评价一下他们小组的想法?

  生3:我认为这个方法好是好,不过转化后的图形的面积怎么求啊?

  师:对啊,你们小组能帮忙解答么?(老师要有一种装不明白的精神,激发学生好奇心和挑战欲)

  生4:我们小组认为,虽然分成了两个三角形,它们形状不同,但是它们的高是一样的。根据我们刚刚学过的三角形计算公式可以求出。(其他小组的学生在这位小老师的提示下明白了)

  师:看看学生经过奇思妙想,想出了这么多的好方法,还有不同方法吗?

  这时其他小组的学生争先恐后地介绍各小组的方法,有的用对折的方法,有的用剪拼的方法,真是八仙过海,各显神通。老师惊喜地发现,学生在推导梯形面积的过程中同时强化了转化的数学思想。

  片段二:利用转化思想拓展教学视野,建立数学模型。

  在本节课的拓展练习上,我是这样处理的:

  已知等腰梯形上、下底的和是10cm,高6cm,求梯形的.面积?想象一下,如果这个梯形的高还是6cm,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?

  师:恩,这位同学非常灵活地运用公式解决这一个问题,想象一下,如果这个梯形的高不变,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?你估计它的上底和下底会是多少?

  (在思考画出新图形的环节上学生遇到了困难,不知道从哪下手。沉思片刻有个女孩举手了)

  师:你来说说看,梯形的上底和下底可能会是多少?

  生1:上底4 cm下底6 cm。

  (这时学生的热情瞬时被点燃,个个举高小手抢答下面可能会出现的情况)

  生2:上底3 cm下底7 cm。

  生3:上底2 cm下底8 cm,上底1 cm下底9 cm,上底0。5 cm下底9。5 cm。

  师:如果继续往右走你想最终会变成一个什么图形?

  生:三角形。

  师:如果从一开始往左走,你想会变成一个什么图形?

  生:长方形。

  师:恩,也是特殊的一种平行四边形。

  生2:哎,老师,我发现了一个问题。

  师:孩子你说。

  生3:老师我还有一点补充,在这个变化过程中,虽然面积都相等,但是各个图形的形状却不相同

  师:讲得真好。对呀,这就是我们数学上的一种重要的变化规律:叫等积变形。看你们多么厉害,发现了这么多规律,真了不起,老师真佩服你们的思维。

  师:通过我们刚才想象的过程,原来梯形的面积、三角形的面积、平行四边形的面积,它们通过变化是否可能存在一定的联系呢?到底有怎样的联系呢?今后我们继续研究。

  通过这道练习题,帮助学生对本单元学过的平行四边形、三角形、梯形之间建立多边形之间的联系,建立平面图形的数学模型:

  梯形面积的一般公式是:S=(a+b)h÷2

  当b=0的时候,这个式子就变成s=ah÷2,即成为三角形的面积公式;

  当b=a的时候,这个式子就变成s=(a+a)h÷2,也就是s=ah,即成为平行四边形的面积公式。

  学生经历了这个过程,能比较直观地感受到多边形之间的联系。

  【案例反思】

  (一)把错误当成宝贵资源

  课堂上我充分利用学生的现实资源组织学生深入学习。如果学生课堂上出现了错误或困难,我更是珍惜这些错误的生成性资源,并给予及时的点拨指导,实现柳暗花明的效果。例如在探讨两个三角形的面积计算公式的时候,有的学生往往找不出转化后的三角形的两个高相等,特别是找钝角三角形的高时,容易出错或出现困难,这个时候我会及时点拨:如果是这个以梯形的上底为底边的三角形,你能找到它的高吗?这时很多学生会会心地点头,进而继续深入思考,发现两个三角形高之间的相等关系。

  (二)合作学习

  现在的学生一般都是独生子女,自尊心、自我意识强,与人合作交往的能力不高。为此,教学中我创设情境,让学生在不断交流与合作、不断相互帮助与支持中,感受合作交流的快乐与成功;让学生在合作交流中自由地发表个人的见解,通过集思广益,促进认知的发展。这样,既利于调动起全体学生参与到学习的全过程,又利于培养学生团结协作和社会交往能力。我认为,在教学过程中,在学生遇到有争议性或疑惑的问题时,安排适当的时间让学生合作交流是非常必要的。本节课,在认识转化后的图形的高的时候,大家就出现了争议,有的认为两个图形的高相等,有的认为转化后的图形的高是原来图形的一半,此时我就安排了小组交流,小组中的每个成员充分发表意见,进而完善认识。

3、《表面积的变化》的教学反思

  《表面积的变化》这是一节实践活动课,是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境实践操作自主探究掌握规律的教学流程进行教学。

  一、创设情境

  新课伊始,我利用多媒体创设情境,带领同学们到商场看看有关商品的包装问题,让学生说一说 为什么我们所见到的都是用这种样式进行包装呢这一情境,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。

  二、引导参与

  《新课标》明确指出:数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。因此,本节课我安排了4次动手操作探究规律的.活动:

  活动一:两个正方体拼成长方体后表面积的变化情况。

  活动二:用两个相同的长方体拼成大长方体,表面积的变化情况。

  活动三:用若干个相同的正方体拼成大长方体,表面积的变化情况。

  活动四:用若干个相同的长方体拼成长方体,表面积的变化情况。

  每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。

  三、以练促思。

  在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。

4、《表面积的变化》教学片段及反思

  片段一:

  师:请你用两个完全相同的小正方体拼成一个长方体。(学生动手操作)

  师:操作后思考:

  ①拼成的长方体体积与原来两个正方体体积和有没有变化?

  ②拼成的长方体表面积与原来两个正方体的表面积和,有什么变化?

  学生交流,教师板书:重叠1次,表面积减少2个面。

  师:那么重叠2次,表面积会减少几个面?重叠3次、4次呢?

  这样的结论是不是正确呢,请你先拼一拼,再观察,然后把表格填完整。

  正方体的个数 2 3 4 5

  拼接的次数

  减少了原来几个面的面积

  交流讨论:你从中发现了什么规律?

  生1:拼接的次数乘2就等于减少的面积。

  生2:正方体的个数减去1就等于拼接的次数。

  生3:正方体的个数减去1的差乘2就等于减少的面积。

  生4:就是这些小正方体必须排成一列。

  师生共同小结:(正方体的个数-1)2=减少面的个数

  反思:

  学生答案是五花八门,有些甚至出人意料,但可以看出他们都在认真思考,积极动脑。由此看来,学生需要老师的鼓励,需要充分展示自己才华的舞台。想想自己平时在这方面可能做的还不够,今后应每堂课给予学生这样的机会,那样必然会出现精彩纷呈的局面。

  片段二:

  出示题目:把10个火柴盒包成一包,怎样包装最省材料?

  师:题目问哪一种包装方法最省料?实际上就是比的什么?

  生:比哪一种长方体的表面积最小。

  师:怎样判别拼成的长方体的表面积是大还是小?

  生1:数一共减少了多少个面,减少的面的面积大而且要尽量的多。

  生2:数外面还有多少个面。

  生3:量一量,算出表面积。

  师:我们先不用量量算算的方法,而要凭眼睛去看看数数,现在用10个火柴盒拼成的大长方体,你们觉得是数减少的面容易,还是数外面留下的面容易。

  生:数外面的容易。

  师:现在手中只有10个火柴盒,一次摆一种,每摆一种,就记下三种面的个数,填在表中。

  师:请同学们四人一组,摆出不同的长方体,并把每次大中小三种面的个数情况记下来。最后进行比较,看看哪一种摆法表面积最小。

  生:自由活动,摆、记、比。

  小组交流,形成一些判别的规律、掌握比较技巧。

  师:刚才有人提出量量算算的方法。正好刚才有几种摆法,大家一开始对它们表面积的大小有疑问,现在请你算算它们的表面积,验证一下我们的结论对不对?

  学生计算,验证刚才的想法。

  反思:

  如果一开始就让学生进行测量,计算出表面积,学生一下子就能找出怎样包装最省材料,但是就失去了今天学习表面积的变化的意义。这个活动是在前面学生初步感知表面积变化的`规律的基础上,引导学生应用数学知识解决生活中的的实际问题,让学生进一步巩固所学的数学知识,同时在解决实际问题的过程中体会数学的应用价值。为了避免活动的盲目性,让学生进行讨论,形成一定的共识,再开展活动,进行研究,提高效率。最后,通过计算,让学生进一步确信最佳的包装方法。这样通过有效的操作,从而提高了学习的效率,促进了学生思维的发展。

5、六年级数学《表面积的变化》的教学反思

  《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。主要让学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。

  本堂课是一节综合实践活动课,为此在设计教案时有别于一般的数学课注重学生的动手操作,通过实践操作自主探究掌握规律的教学流程进行教学。结合本课的教学实际情况,谈几点反思:

  一、能做到引导学生积极参与。

  数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,安排了3次动手操作探究规律的活动:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的'长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台, 而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。

  二、能做到层层递进,以练促思。

  在学生认识了几个完全一样正方体拼接成一行过程中的规律之后,让学生拿6个完全一样的正方体任意拼,以让学生更充分地认识拼接处的规律。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。最后环节让学生包装火柴盒,通过接近生活实际的动手操作,培养学生学以致用的能力。最后环节的拓展延伸,一改拼接的惯性思维,让学生认识切过程使表面积增大。

6、《表面积的变化》教学反思

  本《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的,主要研究几个相同的正方体排成一行拼起,得到的长方体与原几个正方体表面积之和的关系,发现并理解其中的变化规律,培养学生的空间观念。我在传授新知时主要以学生活动为主,让学生在操作活动中发现规律,解决问题。

  新标强调,教学是教与学的交往、互动,师生双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。为了达成这一目标,我在授这一环节中安排了2个活动。活动一:探索2个棱长是1厘米的正方体拼成长方体的表面积变化情况,通过让学生动手拼一拼、看一看、指一指、想一想这些活动,让学生体会表面积发生了变化,体验两个正方体拼成长方体后表面积减少了原两个面的面积。通过学生自己动手操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映。活动二:探索、4、个棱长是1厘米的正方体拼成长方体的表面积变化规律,进而加深到用n个棱长为1厘米的小正方体呢?教材对这节的要求没有明确的规定。比如在活动:学生很容易发现,每增加一个正方体,表面积就减少两个拼接面。找到“减少的面的个数”与“正方体的个数”之间的关系才是最关键的。为了让学生发现这些规律,安排了活动二,学生发现这些规律还是有些困难的,因此我在修改教案时增加了一个环节:我就直接提出问题“拼接条数”、“正方体的个数”与“减少的面的个数”之间有什么关系吗?再进一步就举例,五个正方体拼在一起,有4个拼接处,6个、7个……n个呢?每个拼接处减少两个面,所以可以用公式(正方体的'个数-1)×2表示减少的面的个数。在寻找“减少的面数”与“减少的面积数”、“拼成的长方体的表面积”有什么关系吗?学生在用棱长为1厘米的小正方体时,很快找出规律,但接着将棱长加深到棱长是a时,表面积减少和拼成的长方体的表面积时,找出这个环节上的表现不佳,这是本节的难点,对五年级的学生说确实存在困难,后我反思在此环节上我的引导不到位,并没有找到学生通俗易懂的方法,比如引导时我可以考虑引导学生从拼成的长方体剩下多少个正方形的面,发现剩下面与正方体的个数有什么规律进行引导,可能效果会好。

  本节通过让学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了操作、观察、猜测、分析、实验、验证等活动过程,使学生头脑中有“拼”这一表象,建立了空间观念。这两个活动都是学生通过动手操作、仔细观察、认真思考、合作交流等形式,在引领中体验发现物体拼摆过程中表面积的变化规律,接着用n个棱长为a厘米的正方体排成一行拼成一个长方体让学生思考,进一步巩固发现的规律,提高了学生空间观念的积累水平,发展了数学思考。

  在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。

  培养了学生优化思维和求异思维的能力,促进堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。

7、《表面积的变化》教学反思

  本课《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的,主要研究几个相同的正方体排成一行拼起来,得到的长方体与原来几个正方体表面积之和的关系,发现并理解其中的变化规律,培养学生的空间观念。我在传授新知时主要以学生活动为主,让学生在操作活动中发现规律,解决问题。

  新课标强调,教学是教与学的交往、互动,师生双方相互交流、相互沟通、相互启发、相互补充,在这个过程中教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求得新的发现,从而达到共识、共享、共进,实现教学相长和共同发展。为了达成这一目标,我在授课这一环节中安排了2个活动。活动一:探索2个棱长是1厘米的正方体拼成长方体的表面积变化情况,通过让学生动手拼一拼、看一看、指一指、想一想这些活动,让学生体会表面积发生了变化,体验两个正方体拼成长方体后表面积减少了原来两个面的面积。通过学生自己动手操作,让多种感官协同活动,使具体事物形象在头脑中得到全面的反映。活动二:探索3、4、5个棱长是1厘米的正方体拼成长方体的表面积变化规律,进而加深到用n个棱长为1厘米的小正方体呢?教材对这节课的要求没有明确的规定。比如在活动:学生很容易发现,每增加一个正方体,表面积就减少两个拼接面。找到“减少的面的个数”与“正方体的个数”之间的.关系才是最关键的。为了让学生发现这些规律,安排了活动二,学生发现这些规律还是有些困难的,因此我在修改教案时增加了一个环节:我就直接提出问题“拼接条数”、“正方体的个数”与“减少的面的个数”之间有什么关系吗?再进一步就举例,五个正方体拼在一起,有4个拼接处,6个、7个……n个呢?每个拼接处减少两个面,所以可以用公式(正方体的个数-1)×2来表示减少的面的个数。在寻找“减少的面数”与“减少的面积数”、“拼成的长方体的表面积”有什么关系吗?学生在用棱长为1厘米的小正方体时,很快找出规律,但接着将棱长加深到棱长是a时,表面积减少和拼成的长方体的表面积时,找出这个环节上的表现不佳,这是本节课的难点,对五年级的学生来说确实存在困难,课后我反思在此环节上我的引导不到位,并没有找到学生通俗易懂的方法,比如引导时我可以考虑引导学生从拼成的长方体剩下多少个正方形的面,发现剩下面与正方体的个数有什么规律来进行引导,可能效果会好。

  本节课通过让学生把几个正方体拼成较大的长方体,边操作、边思考,进一步发现表面积发生了变化,初步感到这个变化存在着一定的规律。经历了操作、观察、猜测、分析、实验、验证等活动过程,使学生头脑中有“拼”这一表象,建立了空间观念。这两个活动都是学生通过动手操作、仔细观察、认真思考、合作交流等形式,在引领中体验发现物体拼摆过程中表面积的变化规律,接着用n个棱长为a厘米的正方体排成一行拼成一个长方体让学生思考,进一步巩固发现的规律,提高了学生空间观念的积累水平,发展了数学思考。

  在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。

  培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。

相关文章

推荐文章