教学反思

小学数学《分数应用一》教学反思

2023-06-18 09:30:11

  小学数学《分数应用一》教学反思

小学数学《分数应用一》教学反思

1、小学数学《分数应用一》教学反思

  在分数应用题中,有一些比较复杂的分数应用题,其中有一种应用题,其单位“1”在发生变化,针对这种题,我教给学生的解决策略是“以不变应万变”。

  例如:一根绳子剪去的部分是剩下的1/6,如果多剪10厘米,则剪去部分是剩下部分的1/5,这根绳子全长多少厘米?在这题中最容易找到的单位“1”是剩下的绳子,但是这个剩下的绳子在发生变化,两个剩下绳子长度不一样,剪去的部分也在发生变化,但不管剪去的和剩下的绳子如何变化,这根绳子的长度是不会发生变化的,所以可以找剪去部分和剩下部分分别与全长的关系。根据“一根绳子剪去的部分是剩下的1/6”,可以知道剪去的部分是全长的1/7,或者剩下部分是全长的6/7,根据“剪去部分是剩下部分的1/5”,可以知道,剪去的.部分是全长的1/6,或者剩下部分是全长的5/6,这是就可以设全长为X厘米。1/6X+10=1/5X或者6/7X-10=5/6X,就可以求出这根绳子的全长。

  例如:六(1)班有女生24人,占全班人数的4/9,今年转出若干名女生,这时女生占全班人数的2/5,求今年转出多少名女生。在这一题中的单位“1”全班人数在发生变化,女生也在发生变化,但是男生却不变,转出学生之前男生是多少人,转出学生之后男生也应该是那么多人。根据“六(1)班有女生24人,占全班人数的4/9”先求出转出学生之前全班的人数是(24÷4/9=)54人,那么男生是(54—24=)30人,后来转出学生了,女生占全班人数的2/5,那么男生占全班人数3/5,就可以求出转出之后的全班人数(30÷3/5=)50人,那么转出去的女生人数是(54-50)4人。

  解决复杂的分数应用题还有许多策略,但是学生的基础是前提。希望其他老师能与我交流,一起来探讨解决分数应用题的解决策略。

2、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  应用题的教学是小学一至六年级数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些老教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位“1”;知“1”求几用乘法,知几求“1”用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。

  而我教学时,所说的话并不多,除了“谁能说出这一题的数量关系式?”“谁会解答?”“还有其他的方法吗?”“说说看”“有没有不同的意见”等激励和引导以外,教师没有任何过多的讲解,当学生一次听不明白,需要再讲一遍时,我也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,我决不暗示;学生能说出的,我决不讲解;学生能解决的,我决不插手。由于我在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。

  教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。我在教学中准确把握自己的地位。我真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。

  在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

3、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

4、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  我又一次后悔自己没用录像机记录下课堂上学生精彩的辩论,要知道这种对抗式的辩论是课前无法预设的,值得庆幸的是可以赶紧利用吃饭时间回味并用文字把本学期难得遇到的这次“精彩”整理下来。

  今天早上第四节课要处理第二节没处理完的《分数乘除法应用题对比练习》导学案,第二节临近下课时我说要各组把本组错误最多的题或者不会的题出示在黑板上,其中第四组的组长曲晓燕带着小黑板上了讲台,小黑板上出示的题目是:商店运来一批苹果,其中苹果有180千克,比梨多九分之一,苹果比梨多多少千克?她引导大家分析完这道题后,我心里正想着这一组抓住了这份导学案最容易出错的一道题,该如何表扬他们时,林立浩一个箭步冲上讲台,说这道题还有一种解法:算梨的重量可以用180+180÷,当时有个别学生小声嘀咕:“该用减法而不是加法,因为最后问题是苹果比梨多多少千克?”我重述后林立浩说:“我算的是梨的重量,最后再用苹果的重量减去梨的重量就行了。”还有学生欲言又止,看来有学生知道这种方法不对,但不知道为什么不对,我开始征求学生的意见:“同意曲晓燕这种做法的举手”呼啦啦几十个学生都举手了,“同意林立浩这种解法的举手”只有吴州航、吴欢欢、张翼泽等五六学生,于是我把全班分成两大组讨论你如何把对方说服,其中同意林立浩这种解法的五六个同学编为B组,围在一起讨论。

  巡视时,我发现第一小组的一个学生说:“老师,照他这样算,答案都1000多了,那就不对!”还有一个学生说:“这两个算式利用的不是除法的性质。”我说:“除法的性质是什么?”他无言。另一个学生想补充但是说半截好像发现自己说错了。B组的成员已经开始在黑板上画线段图了。

  辩论开始,B组的林立浩开始指着线段图为大家讲解,梨多苹果果180千克?

  在讲解过程中有很多漏洞,同学们一一指出,他甚至把线段图改为多180千克?

  梨苹果果

  最后临下讲台时,他自言自语:“错了,错了”没想到他的两个接班人继续上来讲述他们的思路。

  三个B组成员讲完之后,付晓霞才站起来反驳:单位“1”未知用除法,用几分之几对应的量除以几分之几,而你们的量和分率根本就不对应,也就是说苹果的重量180千克对应的分率不是九分之一。紧接着禹青青站起来说:他们的线段图画的就不对,苹果的重量180千克应该是这一段,她边说边上讲台用红笔标识。

  梨多苹果果180千克?

  而除法的性质没有同学提,在我的提示下,平时很大方的赵鹏涛才扭扭捏捏地站起来说,两个算式之间不是利用除法的性质,问起除法性质的内容,他说a÷(b+c)=a÷b+a÷c,又暴露出一个问题,此时下课铃已经响起。

5、小学六年级数学上册《分数混合运算》第一课时的教学反思

  核心提示:分数混合运算问题结合了分数的加减乘法的运算法则,以及对于分数的意义和分数实际问题的解决,可以这样说,看似很简单的问题,其实包含的内容却是庞杂的,因而,在我们的实际教学中,我们会感受到孩子们学起来很吃力...

  分数混合运算问题结合了分数的加减乘法的运算法则,以及对于分数的意义和分数实际问题的解决,可以这样说,看似很简单的'问题,其实包含的内容却是庞杂的,因而,在我们的实际教学中,我们会感受到孩子们学起来很吃力,为了让孩子们能更准确地把握这部分的内容,我没有一步到位,而是把这一节课的内容分散成了几节课。

  在这节课上,我让孩子们清楚地看到分析这种问题需要线段图的帮助,同时,也让孩子们感受到分数混合运算与整数四则运算的运算顺序是一样的,在书写格式上,尤其要注意让孩子养成一种作业干净整齐的习惯,让孩子们体验到有些计算的步骤无需写在本上,而只需要在验算纸上进行即可。

6、小学数学《分数应用一》教学反思

  在分数应用题中,有一些比较复杂的分数应用题,其中有一种应用题,其单位“1”在发生变化,针对这种题,我教给学生的解决策略是“以不变应万变”。

  例如:一根绳子剪去的部分是剩下的1/6,如果多剪10厘米,则剪去部分是剩下部分的1/5,这根绳子全长多少厘米?在这题中最容易找到的单位“1”是剩下的绳子,但是这个剩下的绳子在发生变化,两个剩下绳子长度不一样,剪去的部分也在发生变化,但不管剪去的和剩下的绳子如何变化,这根绳子的长度是不会发生变化的,所以可以找剪去部分和剩下部分分别与全长的关系。根据“一根绳子剪去的部分是剩下的1/6”,可以知道剪去的部分是全长的1/7,或者剩下部分是全长的6/7,根据“剪去部分是剩下部分的1/5”,可以知道,剪去的.部分是全长的1/6,或者剩下部分是全长的5/6,这是就可以设全长为X厘米。1/6X+10=1/5X或者6/7X-10=5/6X,就可以求出这根绳子的全长。

  例如:六(1)班有女生24人,占全班人数的4/9,今年转出若干名女生,这时女生占全班人数的2/5,求今年转出多少名女生。在这一题中的单位“1”全班人数在发生变化,女生也在发生变化,但是男生却不变,转出学生之前男生是多少人,转出学生之后男生也应该是那么多人。根据“六(1)班有女生24人,占全班人数的4/9”先求出转出学生之前全班的人数是(24÷4/9=)54人,那么男生是(54—24=)30人,后来转出学生了,女生占全班人数的2/5,那么男生占全班人数3/5,就可以求出转出之后的全班人数(30÷3/5=)50人,那么转出去的女生人数是(54-50)4人。

  解决复杂的分数应用题还有许多策略,但是学生的基础是前提。希望其他老师能与我交流,一起来探讨解决分数应用题的解决策略。

相关文章

推荐文章