《除数是小数的小数除法》数学教学反思
1、《除数是小数的小数除法》数学教学反思
一、把握知识内在联系,找准新知识的最佳生长点
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21。45÷1.5、0.145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的.飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、抓住本质,化繁为简,创造性地处理教材
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,完全没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中,抓住除数是小数的除法的本质,不在竖式计算上设置人为的障碍,降低学生学习的难度,才能使学生学得更轻松。
被除数和除数的小数位数不同,更明显地体现了商不变性质的应用,有助于学生更加深刻地理解算法的本质。计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
三、发挥学生的主体作用,让学生在自主的学习中获得新知,更新认知结构
在教学中,出示214.5÷15=14.3,要求学生根据商不变的规律说出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商,让学生根据已有的知识经验去尝试,再让学生通过思考、观察、比较2.052÷3.6、2052÷0.36、2.052÷0.036的转化过程来发现除数是小数除法的转化方法。
最后通过计算来总结计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
四、巧用儿歌教学,帮助学生总结算法,突破难点
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
2、《除数是整数的小数除法》教学反思
“除数是整数的小数除法”教学素材选用购物情境(如文中图),解决问题的三个除法算式穿插着计算方法中的三个核心环节:⑴商的小数点要和被除数的小数点对齐;⑵除到末尾还有余数时,可以添0继续除;⑶个位不够商1时,要商0。
“除数是整数的小数除法”新授部分教学流程可以分为两个环节,一是除法算式的意义,二是计算方法。
第一环节学生列式并不难,9.6÷3=3.2(有学生直接说出答案)、12÷5=、5.7÷6=三个解决问题的算式绝大多数学生都能直接回答,列式的理由有点统一:总价÷数量=单价。列出除法算式的理由像学生一样表述是可以的,我感觉从除法的认识去理解可以让学生体会整数除法和小数之间的联系,于是,我指着算式说:“3千克苹果9.6元,把9.6元平均分给3千克苹果,可以得到每千克苹果多少元。”让学生在模仿说一说的过程中,再次体会平均分情境中除法的意义,有效地沟通了整数除法与小数除法之间的联系,也帮助了学差生们提高数学素养水平。在呈现除法算式的同时,又一次让学生注意“除以”和“除”的不同,再次属性除法算式中各部分的名称,熟悉了“单价×数量=总价”等常用的数量关系式。
第二环节学习小数除法的计算方法,学生面临的不断的“挑战”。首先是理解9.6÷3=3.2算法时学生们是这样理解的,生1:可以9.6看做96来除,得到32后然后点上小数点。思考:学生已经有按照整数除法的方法来解决小数除法的趋向。生2:把9.6分开除,9除以3商3,0.6除以3得0.2,合起来就是3.2。思考:“商的小数点和被除数的小数点对齐”学生就是这样表述的,将9.6÷3=用竖式计算时,就能让学生直观地体会,形成计算方法;接着是理解12÷5=的计算方法,让学生自己尝试、交流,以板演的形式呈现学生的计算过程,在比较中理解除到末尾还有余数时,可以添0继续除的理由,即小数的末尾可以填上无数个0(小数的性质),从而形成、完善小数除法的计算方法;最后是通过5.7÷6=的计算,继续完善小数除法的计算方法。这一环节的教学活动,教师在不断地激活学生的记忆,温习整数除法的计算方法。比如,除数是一位数时,先看被除数的第一位(最高位),不够除时看被除数的前两位;每一次除的过程中,余数要比除数小等等。
“除数是整数的小数除法”这一节的起点在哪里?起点在学生那里,在教与学的过程中,要善于扑捉信息,不断地地调整学习起点,不要轻易放弃某一个细节上存在的问题。本节课的教学中,我根据我班的学生情况,在不断地降低学习起点,降低到除数是一位数的整数除法,降低到除法算式中各部分的名称等等,在降低起点的过程中,不断地解决学生学习过程中的问题。常熟市教育局教研室小学数学教研员徐建文老师说过:是不是存在一个准确的、静态的起点?其实,低起点的教学也能教出深刻性,关键还要看教师在教学中怎样把握学生的实际。
我认为,学习起点不是机械地确定的,而是根据实际变化的。
3、《除数是整数的小数除法》教学反思
我讲了一节《小数除法》,在备课的时候,我将教材小数除法的意义先讲了。因为我想,小数除法的第一课时算理是比较难的,应该将重点放在算理上。小数除法的意义在学整数除法的意义的时候已经有所感知,只需要拿出一点时间复习一下就可以了!
在教学的时候,对于教学安排的改变是这样的:教材上安排的第一课时要教学除数是整数的和除数是小数的小数除法两个例题!我觉得,两个例题一起讲不太合适,学生应该先学除数是整数的小数除法,这部分知识是除数是小数的小数除法的基础,学生不但要会算,还要熟练的掌握才行!因为是基础,我把除数是整数的小数除法中的几种情况都放在一起讲了:一般情况、整数部分商0的,小数部分十分位、百分位不够除用0占位的,整数除以整数商是小数的,以及除到被除数的末尾不够除,根据小数的性质添0继续除的。学生在这样地教学安排中,可以循序渐进地一步步熟悉除数是整数的小数除法!这种教学内容的改变,在课堂中,比较适应学生的学习,取得了良好的效果!这次视导,我最大的收获就是将教学内容根据学生的情况进行了适时适度的调整。这样做,做到了以学生为本!
教学计算的课比较枯燥的,要把比较枯燥的课上得有趣,我也是动了一番脑筋,首先是从学生熟悉的生活实际入手,,已经进入了新课的内容!学生在学习新课的时候,我还是本着学生会的不教,让他们先尝试,在尝试的过程中,发现问题,提出问题,大家一起解决问题!学生提出问题后,让会的学生先解答,在解答的过程中不断地有人提出新的问题,大家一起解决,在比较困难的地方,教师要发挥自己的主导作用,比如在说计算过程的时候,教师先问:“先从被除数的哪部分除起?”区分了整数与小数除法的不同!在不够商1的时候,要怎么办,把问题推给学生,学生根据以前的知识,迁移类推,就总结出了“不够商1,0占位”,在教学除到被除数的末尾仍有余数+的时候,学生就出现了两种答案,一种是除到末尾有余数,一种是添0继续除!两方的学生开始辩论,说出自己的理由,在学生的争辩中,学生学会了计算这样的除法!
但有学生也提出了的一些看法,比如,班里有一个学生因为没有带尺子,我批评了他,后面他的学习就有点闷闷不乐!,关注个别学生的情感变化的这个过程,我还是做的不够!
在今后的教学中,我还要大胆地合理使用教材,设计适合学生的教法。这是我在教学后的一些反思。
4、小学数学五年级上册第二单元《除数是小数的小数除法》教学反
五年级数学上册《除数是小数的小数除法》教学反思
新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
“除数是小数的除法”教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是小数的除法转化成除数是整数的除法进行计算。教学时,我首先帮助学生复习了除数是整数的小数除法的算理,这是学生学习除数是小数的除法的基础和知识的生长点,当学生掌握了除数是整数的小数除法的计算方法后,我引出了除数是小数的小数除法,通过对比使学生发现它们的不同之处,这时引导学生思考,能否把除数是小数的除法转化为除数是整数的除法来计算呢?学生都跃跃欲试,有的学生直接把被除数和除数的小数点都划掉了,变成了整数除以整数,有的则根据商不变的性质,把除数和被除数分别扩大了相同的倍数,针对学生的种种做法,我没有急于纠正,而是让学生自己讲解,通过学生自己说理,大家都认为被除数和除数扩大相同的倍数去计算才能保证计算的正确,出现错误的同学明白了道理后,自己改正了错误,教学中放手让学生去探索、去尝试解决问题,体现了学生的自主性,也有利于学生深刻地理解和掌握知识。
在作业反馈中,我发现学生计算错误较多。 主要表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的`时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点与被除数原来的小数点对齐。
四、验算时用用商乘以移动小数点后的除数。
五、除到哪位商那位,不够时忘记在商的位置上写0,再拉下一个数。还有部分学生用余数再除一次。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似“简单”的问题却出现了纷繁的错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样或许效果会好许多。
5、《除数是整数的小数除法》的教学反思
我讲了一节《小数除法》,在备课的时候,我将教材小数除法的意义先讲了。因为我想,小数除法的第一课时算理是比较难的,应该将重点放在算理上。小数除法的意义在学整数除法的意义的时候已经有所感知,只需要拿出一点时间复习一下就可以了!
在教学的时候,对于教学安排的改变是这样的:教材上安排的第一课时要教学除数是整数的和除数是小数的小数除法两个例题!我觉得,两个例题一起讲不太合适,学生应该先学除数是整数的小数除法,这部分知识是除数是小数的小数除法的基础,学生不但要会算,还要熟练的掌握才行!因为是基础,我把除数是整数的小数除法中的几种情况都放在一起讲了:一般情况、整数部分商0的,小数部分十分位、百分位不够除用0占位的,整数除以整数商是小数的,以及除到被除数的末尾不够除,根据小数的性质添0继续除的。学生在这样地教学安排中,可以循序渐进地一步步熟悉除数是整数的小数除法!这种教学内容的改变,在课堂中,比较适应学生的学习,取得了良好的效果!这次视导,我最大的收获就是将教学内容根据学生的情况进行了适时适度的调整。这样做,做到了以学生为本!
教学计算的课比较枯燥的,要把比较枯燥的课上得有趣,我也是动了一番脑筋,首先是从学生熟悉的生活实际入手,,已经进入了新课的内容!学生在学习新课的时候,我还是本着学生会的不教,让他们先尝试,在尝试的过程中,发现问题,提出问题,大家一起解决问题!学生提出问题后,让会的学生先解答,在解答的过程中不断地有人提出新的问题,大家一起解决,在比较困难的地方,教师要发挥自己的主导作用,比如在说计算过程的时候,教师先问:“先从被除数的哪部分除起?”区分了整数与小数除法的不同!在不够商1的'时候,要怎么办,把问题推给学生,学生根据以前的知识,迁移类推,就总结出了“不够商1,0占位”,在教学除到被除数的末尾仍有余数+的时候,学生就出现了两种答案,一种是除到末尾有余数,一种是添0继续除!两方的学生开始辩论,说出自己的理由,在学生的争辩中,学生学会了计算这样的除法!
但有学生也提出了的一些看法,比如,班里有一个学生因为没有带尺子,我批评了他,后面他的学习就有点闷闷不乐!,关注个别学生的情感变化的这个过程,我还是做的不够!
在今后的教学中,我还要大胆地合理使用教材,设计适合学生的教法。这是我在教学后的一些反思。
6、《除数是小数的除法》的教学反思
除数是小数的除法是本节教材的重点,把除数是小数的除法转化成除数是整数的除法时,按照小数点的移位法则。其关键是根据除数、被除数同时扩大相同的倍数,商不变的性质,把除数是小数的除法转化成除数是整数的除法进行计算。
1、在教学时, 为学生创设了一个比较熟悉的情境,调动了学生的积极性,解决问题。由于提出的问题在现实生活中是存在的`,学生能根据以往的生活经验进行思考、分析,从而增加解决问题的成功率,提高他们的学习兴趣。在教学设计中,由于不同的学生常常有不同的解题策略,为了最有效、最合理地解决问题,必须从中选择一个最佳算法。这里,为学生提供了数学交流的机会。比较各种算法,培养学生观察、分析、比较的能力,并通过这一过程使学生感受到这些计算方法的特点,培养学生的优化意识。最后得到小数除法的计算法则。学生在交流中不断地讨论、表达,促进数学思维活动,从而使学生数学的思维品质得到培养,数学思维能力得到提高。
2、遇到课堂中学生分析问题或解决问题出现错误时,比如当学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误,学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。
3、改变了教材的传统例题模式;课堂引入从生活实际出发,变例题为习题。 由于除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补0。针对这些情况进行专项训练。
①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②.横式移位练习。练习在横式中移动小数点位置时,由于划、移、点只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。
7、《除数是小数的小数除法》数学教学反思
一、把握知识内在联系,找准新知识的最佳生长点
除数是整数的小数除法学生较容易掌握。但除数是小数的除法却是个难点。而商不变性质正是联系旧知与新知的桥梁,也是新知的最佳生长点。在教学中,复习旧知后,我要求学生根据214.5÷15=14.3,利用商不变的规律直接写出21。45÷1.5、0.145÷0.015的商。这是学习层面的一个飞跃,但却是有根据、有基础的.飞跃。学生能根据商不变性质来说理,就证明了这个飞跃是学生能够接受的。只要紧紧抓住商不变性质这根线索,这部分内容就能轻松获得突破。
二、抓住本质,化繁为简,创造性地处理教材
计算除数是小数的除法,要根据商不变性质先转化为除数是整数的小数除法来计算,再反推出原式的商。计算除数是小数的除法,最根本的是要先按照除数是整数的除法算出商,完全没有必要计算时在小数点的问题上过多纠缠,增加学生的学习难度。教学中,抓住除数是小数的除法的本质,不在竖式计算上设置人为的障碍,降低学生学习的难度,才能使学生学得更轻松。
被除数和除数的小数位数不同,更明显地体现了商不变性质的应用,有助于学生更加深刻地理解算法的本质。计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
三、发挥学生的主体作用,让学生在自主的学习中获得新知,更新认知结构
在教学中,出示214.5÷15=14.3,要求学生根据商不变的规律说出21.45÷1.5、2.145÷0.15、0.2145÷0.015的商,让学生根据已有的知识经验去尝试,再让学生通过思考、观察、比较2.052÷3.6、2052÷0.36、2.052÷0.036的转化过程来发现除数是小数除法的转化方法。
最后通过计算来总结计算方法,在教学中给了学生充分的自主学习空间,让学生在尝试、观察、比较、思考中完成新知与旧知同化,更新知识结构,收到了较好的效果。
四、巧用儿歌教学,帮助学生总结算法,突破难点
在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误,适时引用儿歌可以帮助学生较好的突破这个难点。“外移几,里移几;方向一致要注意;里缺补零要牢记;上下点点要对齐。”
8、《除数是整数的小数除法》教学反思
一、 课前复习相关知识
第一复习整数除法如:115÷5让学生在草稿上计算这道题,再让学生说一说计算方法,第二让学生说一说11.5的组成,从而通过复习整数除法的计算和小数的意义,有利于学生对小数除法的算理和算法的探究。因此,从课堂上学生学习过程来看,学生能把整数除法的计算方法迁移到被除数是小数的除法上来,这充分说明新课前的复习是很有必要的。
二、 创设情境与生活实际的紧密联系
现实生活既是计算教学的源头,更是计算教学的.归宿。播放课件,创设学生所熟悉的商店购买牛奶的场景,由此引出哪家商店的牛奶便宜,突出精打细算的的主题,自然的引入小数除法,让学生在具体的情境中感受体会小数除法的意义,激发学生探究小数除法的兴趣。
三、 组织学生自主探究、合作交流,同时体现算法多样化
新课标要求学生应当经历数学的学习过程,在自主探究和合作交流的过程当中学习知识,掌握数学的学习方法。因此学生明确小数除法的意义后,引导学生探究计算方法,先让学生试算,再小组交流,然后集体汇报,从而概括出合理简便的计算法。通过小组讨论,然后汇报,最后归纳出商的小数点和被除数的小数点应对齐以及小数部分有余数添零再除。这样将课堂充分的交给学生,而教师作为一个引导者和组织者,让学生自己探索,组织学生相互质疑,合作讨论,使学生体验到成功的喜悦。
四、 归纳小结,巩固提高
本节课归纳小结主要从两方面:第一归纳计算方法,第二让学生说一说在计算中要注意什么。设计了2个练习题,主要内容联系实际,这样既紧扣精打细算的主题,又巩固刚学的知识。
在本节课的教学过程当中,也有不足之处。第一启发学生思考问题的力度不够,第二思想教育方面,还需要加强。
9、《除数是整数的小数除法》教学反思
教学内容:课程标准实验教科书第九册P72-73页例4、“试一试”、“练一练”,练习十三1-3题
教学目标:
1、在具体情景中探索并初步掌握除数是整数的小数除法的计算方法,会用竖式进行计算。
2、 在探索计算方法的过程中,进一步体会数学知识之间的内在联系,培养比较、分析和归纳等思维能力,以及类比、迁移的学习能力,感受数学探索活动的乐趣。
教学过程:
一、引入课题。
1、同学们,在买东西时顾客经常讨价还价,下面是一个关于还价的真实的事情:
商贩在卖苹果,一个人问:“老板,多少钱一斤?”
“一块五一斤”
“太贵了,这样吧,5块钱3斤卖不卖?”
听到这里,你有什么想法?类似这样的购物问题,既可以用小数乘法解决问题,也可以用小数除法解决问题,这节课我们就来学习小数除法。
二、教学例题。
1、创设情境:
一位女士说:“我买4盒牛奶。”
营业员说:“一共6.8元。”
师:看了刚才的`镜头,你了解了哪些信息?王老师只有2元,买一瓶牛奶够吗?
引导理解6.8÷4就是用总价除以数量求单价的方法。
2、估算单价。
你是怎么算出是1元多一些的呢?
买3块月饼共用8.7元,平均每块月饼几元多一些?
买5条同样的牙膏共用52.5元,每条牙膏几元多一些?
这两个问题,你能估算出它的结果吗?
3、独立探索。
看来2元是够的,还要找钱,要知道找多少钱,必须先算出什么?
你能自己想办法算出6.8÷4的商吗?学生试算。
可能会有以下几种情况:
(1)把6.8元改写成68角去计算,用68÷4,结果是17角,就是1.7元。
(2)把6.8看成68去计算,被除数扩大10倍,再把商17缩小10倍。应用了商的变化规律。
(3)
(4)
教师重点引导学生比较第3种情况和第4种情况,让学生体会小数除以整数可以按照整数除法的计算法则去除。
4、验算结果。
结果都是1.7元,确信吗?
引导学生利用单价乘数量等于总价进行验算。
5、理解算理。
你能利用计数单位帮助你思考、计算5.847÷3吗?竖式计算5.847÷3。
学生可能会有以下情况:
(1)对第1种情况,请同学利用计数单位讲解小数除以整数的算理。
(2) 对第2种情况,指出竖式中的错误,并对两种竖式进行比较。
(3)说一说除数是整数的小数除法的怎样计算?
按照整数除法的法则去除,商
的小数点要和被除数的小数点对齐,每次除得的余数都要和被除数下一位的数合起来继续往下除。
三、课堂练习。
1、巩固练习。
(1)计算下列各题。
9.42÷6 94.2÷6 87.64÷7 876.4÷7
(2)改错(竖式略)。
94.2÷3 3.34÷2
(3)根据5823÷3=1941,口算下列各题。
58.23÷3= 5.823÷3= 582.3÷3=
2、解决问题。
(1)在2004年的雅典奥运会上,我国射击运动员杜丽最后5枪打出52.5环的成绩勇夺该项目的奥运金牌,平均每枪打多少环?
(2)两种规格的牙膏的售价情况如下:如果买3支小牙膏,售价是8.7元,如果买4支小牙膏,售价是10.8元。购买哪种牙膏比较合算?
(反思)
1、本节课是学生刚开始接触小数除法,这一课时内容很多,教材一下子呈现了好几种类型,考虑到中下等同学的接受和掌握的能力,所以我把除数是整数的小数除法这一课分两课时进行教学,补充了一些相关习题,这样效果非常好。
2、引导学生独立思考,再发挥相互交流合作学习的作用,鼓励学生用自己的方法自己计算、动脑思考,在不同的竖式比较中形成冲突,在交流中感悟算理,在与整数除法的比较中总结出除数是整数的小数除法的计算法则:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐,每次除得的余数都要和被除数下一位的数合起来继续往下除。
3、练习中针对重点、难点设计了专项练习,使新知识在学生原有的认知结构中“生根”,使原有的认知结构得到发展。练习过程中重视反馈,抓住学生出现的问题,及时分析、弥补,让每一位都感受到学习成功的喜悦。
10、沪教版五年级数学上册《除数是整数的小数除法》的教学反思
除数是小数的除法,是一节计算课,算理的理解、竖式的写法都是学生第一次接触。本节课如果按照教材的顺序教学,学生就会学得很枯燥,教师也会很疲惫,算理的理解不会很透彻,计算也不会扎实。要避免这些弊端,就要合理地设计教学,精心预设学生的想法。结合我自己在准备这节公开课的过程中的实践经验,我有以下两点想法。
一、合理设计——把握重、难点才是关键。
除数是小数的除法,是小数除法中的难点。它安排在整册教材的第九单元小数乘法和除法(二)中。虽然教材把这个内容安排在小数乘小数之后,但是这部分内容的基础是除数是整数的除法,除数是整数的除法学生已经学过了,还是比较容易掌握的。如何把新知与旧知联系起来呢?商不变的规律就是沟通新旧知识的纽带。利用商不变的规律,就能把除数是小数的除法“转化”成除数是整数的除法。这是教学本节课内容的一个重点,也是难点。在理解了算理以后,在竖式中进行转化是学生学习过程中的又一重点、难点。
基于这些,我在教学设计中就安排了这样几个层次
1、复习旧知:商不变的规律;除数是小数的除法引入。
2、出示例题并列式7.98÷4.2,与复习中的算式比较,发现除数是小数了,引出新问题。
3、合作探索:你会用学过的知识解决这个新问题吗?得出“转化”成除数是小数的除法;练习体会“转化”。
4、师生共同得出如何在竖式中表示出“转化”的过程,并完成竖式;练习在竖式中转化;练习计算除数是小数的除法。
5、小结计算除数是小数的除法的计算方法。
只有在把握了教学的重点、难点之后,才能合理地、一层接一层地设计教学,才能很好地实现教学的有效性。
二、精心预设——错误也是有效的教学资源。
第一次设计学生合作探索时,我预设了学生可能出现的几种做法
1、转化成798÷42;
2、转化成角来计算;
3、转化成79.8÷42;
4、转化成798÷420。
但是在实际试上的时候,大多数同学的做法是第一种,几个同学能想到第三种,没有人能想到第二种、第四种。针对这样的情况,我就设想能不能让学生抓住第一种错误的`做法进行分析,思考:“转化成798÷42算出的结果会和7.98÷4.2的结果一样吗?”然后再让学生说别的想法。结果按照这一思路试上后,学生很自然地用商不变的规律来说明这样转化是错误的,并有更多同学想到了要转化成79.8÷42,还有同学想到了转化成798÷420。学生在审视错误的过程中强化商不变的规律,并自然地得出正确的转化方法,这不正是我所希望的吗?这一过程这样处理后,学生对于“转化“的依据印象更深,也理解了除数是小数的除法的算理:要把除数是小数的除法转化成除数是整数的除法。