教学反思

《用直线上的点表示分数》的教学反思

2023-08-19 17:55:16

  《用直线上的点表示分数》的教学反思

《用直线上的点表示分数》的教学反思

1、《用直线上的点表示分数》的教学反思

  一、教材内容的编排 遵循学生的认知规律

  对于分数意义的教学,遵循由简到难的一般教学规律,人教版小学数学教材安排在三年级上学期和五年级下学期两个学段进行教学。基于这一年龄段的孩子,他们对知识的学习主要还是以直观形象为主,小学数学教材中,分数这一内容安排有多种直观模型,这样的编排更适合孩子对知识的学习。

  1、分数的直观模型

  (1)实物模型,例如半杯牛奶、半个苹果……儿童最早接触分数概念及其术语可能与空间有关, 而且更多是三维的, 而不是二维的,分数概念的引入是通过“平均分”某个实物取其中的一份或几份认识分数的,这些直观模型即为分数的“实物模型”。

  (2)面积模型:用面积的“部分—整体”表示分数。通过“平均分”某个“正方形”或者“圆”,取其中的一份或几份(涂上“阴影”)认识分数的,这些直观模型即为分数的“面积模型”。学生在三年级主要是借助面积模型初步认识分数。

  (3)集合模型:用集合的“子集—全集”来表示分数。这也是“部分——整体”的一种形式, 与分数的面积模型联系密切,甚至几乎没有区别, 但学生在理解上难度更大。关键是“整体 1”不再真正是“一个整体”了, 而是把几个物体看做“一个整体”, 作为一个“单位”, 所取的一份也不是一个, 可能是几个作为一份。例如,在下图中,“蓝色长条”占全部“长条”的 。

  分数的集合模型需要学生有更高程度的抽象能力, 其核心是把多个物体看做“整体 1”。 分数的集合模型的优点是有利于用比较抽象的数值形式表示“比”与“百分比”。这时, 我们把分数看做是算子, 即把分数看做是一个映射。例如, 下面深色长条与无色长条之比为 3∶2, 或者写为 。

  分数的集合模型需要学生有更高程度的抽象能力,其核心是把“多个”看作“整体1”,所以是五年级学习分数的意义的重点,也是与三年级认识分数最大的不同。

  (4)分数的“数线模型”:(数轴上表示的线段长度、点)

  分数的“数线模型”就是用“数线”上的`点表示分数。它把分数化归为抽象的数,而不是具体的事物。

  二、各种直观模型之间的关系

  分数的“数线模型”与分数的“面积模型”有着密切的联系:一个分数可以表示“单位面积”的“一部分”,也可表示“单位长度”的“一部分”,前者是二维的,后者是线性的,是一维的。

  三、分数的“数线模型”:(数轴上表示的线段长度、点)

  “数线模型”是“数轴”的前身,是数轴的“局部放大”和“特殊化”,是用“点”来刻画“分数”。如图:

  分数的数线模型相对于面积模型和集合模型来说有一定的难度,所以教材中并没有出现用数线上的点表示分数,但是在学习了真分数和假分数后出现了在数轴上表示真分数和假分数。(在学生理解了分数的意义基础上,逐渐抽象出数线模型)如:三年级认识分数时出现是多为用分数表示段的长度:

  如:五年级认识分数意义时多用分数表示点(数轴),更抽象。学生理解比较难。

  四、数形结合 体会真分数和假分数分布范围

  把分数在数轴上直观地加以表示,这是数学素养的重要组成部分,让小学生知道正的真分数是密密麻麻地分布在(0,1)区间上的,假分数分布在≥1区间上的,加强分数和数直线之间的联系,更好的体会到数形结合的妙处。

  五、用直线上的点表示分数的方法

  1、确定各数所在的范围——看这个分数在那两个自然数之间;

  如真分数 在(0,1)即0< <1 假分数: 在(1,2)范围,即:1< <2.

  2、找出“1”在哪里?重新等分,找出分数单位,即:标明1份是(1/几)

  ①在0~1这一段容易找到分数单位 ,对于分数 、 、 顺着数出分数单位的个数;

  ②在6等分格里找出分数单位 有一定的难度,需要学生明白分数的面积模型,这里是把每2格看作一份,即:分数单位 的地方, 可以按照这个分数单位去找。

  3、对假分数 ,看有(5)个 ,顺着数过去,确定点。

2、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  应用题的教学是小学一至六年级数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些老教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位“1”;知“1”求几用乘法,知几求“1”用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。

  而我教学时,所说的话并不多,除了“谁能说出这一题的数量关系式?”“谁会解答?”“还有其他的方法吗?”“说说看”“有没有不同的意见”等激励和引导以外,教师没有任何过多的讲解,当学生一次听不明白,需要再讲一遍时,我也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,我决不暗示;学生能说出的,我决不讲解;学生能解决的,我决不插手。由于我在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。

  教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。我在教学中准确把握自己的地位。我真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。

  在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

3、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  分数除法教学是整个小学阶段应用题教学的重、难点之一。一个数除以分数是在一个数除以整数的基础上,继续学习一个数除以分数的方法。如何推导分数除法的计算方法,有多种方法。例如:利用商不变规律进行推导;利用等式的基本性质进行推导;利用逆运算关系和分数的基本性质进行推导;联系实际问题分析、推导等。

  而教材选用的是最后一种,意在结合具体的情景,通过线段图的分析,让学生明白算理。而在以前的教学中,我习惯让学生通过大量的例子归纳方法,让学生经历从特殊到一般的归纳过程。所以,在第一次教学时我先让学生计算两组比较简单的算式,并且引导学生对算式进行观察、比较和分析,让学生通过猜想——尝试——验证,发现一个数除以分数和乘这个分数的倒数的结果都相等。然后进行练习,学生学习效果也不错,教学过程一切自然流畅。

  清晰地记得去年教学此内容时,下课后,一个学生问我:“老师,一个数除以分数为什么要乘这个分数的倒数呢?”这句话引起了我的反思。是啊!一个数除以分数的算理还没有讲清楚呢?因为一直以来都是这样教学,只是通过猜想、尝试、验证、归纳一个数除以分数和乘这个分数的倒数的结果相等,也就把计算法则作为一个规定硬性地塞给了孩子,而忽视了算理的教学,这种学生只知其然而不知其所以然。翻阅教材,发现教材是通过画线段图让学生来明白算理,注重的算理的教学,忽视猜想、尝试、验证、归纳这种数学思想的渗透。如何让两者有机的结合起来呢?既能让学生明白算理又让学生渗透这种数学方法呢?

  经过仔细反思之后,今年我在教学此内容时,调整了我的教学过程。我在学生猜想、尝试、验证、归纳出一个数除以分数等于乘这个分数的倒数的结果后,我抛出了这个问题:一个数除以分数为什么要乘以这个数的倒数呢?学生思考,讨论。汇报时学生开始大部分围绕因为结果相等来总结。此时我再结合线段图对学生进行算理的教学,大部分同学们恍然大悟,都露出了灿烂的笑容。孩子们高兴地说分数除法的算理也恰恰证明了我们猜想是正确的。

  从这节课,使我感悟到,计算教学,最省事的教法就是把计算方法和盘托出,直接告诉学生,然后进行大量的训练。可是这样教学,尽管也能让学生熟练掌握算法,但学生只知其然,不知其所以然。为了培养学生的学习能力和探究能力,促进学生的发展,我们应该舍得花时间让学生经历计算方法的探索过程。这也是课程改革理念在计算教学中的具体体现。

4、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

5、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  倒数的意义的教学是在分数乘法的基础上进行的,主要为后面学习分数除法的准备,这节课的内容主要包含两部分:

  一是倒数的意义,二是求倒数的方法,内容看似简单但是我却把“小事情做出了大文章”.

  本节课我从几方面入手:一是创设了恰当的问题情境,使数学研究直逼数学的本质,提高了学生学习数学的兴趣。数学虽然和生活联系密切,但数学真正的发展却来源于数学自身。本节课紧紧抓住这一点,先是让学生回忆数的运算的一些非常重要的规律”比如:一个数和1相乘还得原数;一个数和零相乘结果得0;一个数除以它本身结果得多少,让学生明确:在运算中两个数的关系往往有非常稳定的规律,今天我们继续研究两个数的关系,从数学发展源头入手,单刀直入,直逼数学的内容,让学生体会数学方法的一致性,调动了学生的积极性。

  二、我注重学生的思维推进有效的实现概念的自我建构。在学生观察出教师出示的两个数的关系时,教师适时的抛出问题:在这个概念中你觉得那个词比较关健,引到学生的思维逐步推进,顺利的解决了“乘积是1”的“两个数 “互为倒数”这三者的关系,培养了学生初步的逻辑思维能力;紧接着通过探究0和1的倒数问题,使学生的思考进一步深刻,从而使学生对倒数的概念完成了真正的意义上的自我建构。

6、《用直线上的点表示分数》教学反思

  对于分数意义的教学,遵循由简到难的一般教学规律,人教版小学数学教材安排在三年级上学期和五年级下学期两个学段进行教学。基于这一年龄段的孩子,他们对知识的学习主要还是以直观形象为主,小学数学教材中,分数这一内容安排有多种直观模型,这样的编排更适合孩子对知识的学习。

  1、分数的直观模型

  (1)实物模型,例如半杯牛奶、半个苹果儿童最早接触分数概念及其术语可能与空间有关, 而且更多是三维的, 而不是二维的,分数概念的引入是通过平均分某个实物取其中的一份或几份认识分数的,这些直观模型即为分数的实物模型。

  (2)面积模型:用面积的部分整体表示分数。通过平均分某个正方形或者圆,取其中的一份或几份(涂上阴影)认识分数的,这些直观模型即为分数的面积模型。学生在三年级主要是借助面积模型初步认识分数。

  (3)集合模型:用集合的子集全集来表示分数。这也是部分整体的一种形式, 与分数的面积模型联系密切,甚至几乎没有区别, 但学生在理解上难度更大。关键是整体 1不再真正是一个整体了, 而是把几个物体看做一个整体, 作为一个单位, 所取的一份也不是一个, 可能是几个作为一份。例如,在下图中,蓝色长条占全部长条的 。

  分数的集合模型需要学生有更高程度的抽象能力, 其核心是把多个物体看做整体 1。 分数的集合模型的`优点是有利于用比较抽象的数值形式表示比与百分比。这时, 我们把分数看做是算子, 即把分数看做是一个映射。例如, 下面深色长条与无色长条之比为 3∶2, 或者写为 。

  分数的集合模型需要学生有更高程度的抽象能力,其核心是把多个看作整体1,所以是五年级学习分数的意义的重点,也是与三年级认识分数最大的不同。

  (4)分数的数线模型:(数轴上表示的线段长度、点)

  分数的数线模型就是用数线上的点表示分数。它把分数化归为抽象的数,而不是具体的事物。

  二、各种直观模型之间的关系

  分数的数线模型与分数的面积模型有着密切的联系:一个分数可以表示单位面积的一部分,也可表示单位长度的一部分,前者是二维的,后者是线性的,是一维的。

  三、分数的数线模型:(数轴上表示的线段长度、点)

  数线模型是数轴的前身,是数轴的局部放大和特殊化,是用点来刻画分数。如图:

  分数的数线模型相对于面积模型和集合模型来说有一定的难度,所以教材中并没有出现用数线上的点表示分数,但是在学习了真分数和假分数后出现了在数轴上表示真分数和假分数。(在学生理解了分数的意义基础上,逐渐抽象出数线模型)如:三年级认识分数时出现是多为用分数表示段的长度:

  如:五年级认识分数意义时多用分数表示点(数轴),更抽象。学生理解比较难。

  四、数形结合 体会真分数和假分数分布范围

  把分数在数轴上直观地加以表示,这是数学素养的重要组成部分,让小学生知道正的真分数是密密麻麻地分布在(0,1)区间上的,假分数分布在1区间上的,加强分数和数直线之间的联系,更好的体会到数形结合的妙处。

  五、用直线上的点表示分数的方法

  1、确定各数所在的范围看这个分数在那两个自然数之间;

  如真分数 在(0,1)即0< <1 假分数: 在(1,2)范围,即:1< <2.

  2、找出1在哪里?重新等分,找出分数单位,即:标明1份是(1/几)

  ①在0~1这一段容易找到分数单位 ,对于分数 、 、 顺着数出分数单位的个数;

  ②在6等分格里找出分数单位 有一定的难度,需要学生明白分数的面积模型,这里是把每2格看作一份,即:分数单位 的地方, 可以按照这个分数单位去找。

  3、对假分数 ,看有(5)个 ,顺着数过去,确定点。

7、《用直线上的点表示分数》的教学反思

  一、教材内容的编排 遵循学生的认知规律

  对于分数意义的教学,遵循由简到难的一般教学规律,人教版小学数学教材安排在三年级上学期和五年级下学期两个学段进行教学。基于这一年龄段的孩子,他们对知识的学习主要还是以直观形象为主,小学数学教材中,分数这一内容安排有多种直观模型,这样的编排更适合孩子对知识的学习。

  1、分数的直观模型

  (1)实物模型,例如半杯牛奶、半个苹果……儿童最早接触分数概念及其术语可能与空间有关, 而且更多是三维的, 而不是二维的,分数概念的引入是通过“平均分”某个实物取其中的一份或几份认识分数的,这些直观模型即为分数的“实物模型”。

  (2)面积模型:用面积的“部分—整体”表示分数。通过“平均分”某个“正方形”或者“圆”,取其中的一份或几份(涂上“阴影”)认识分数的,这些直观模型即为分数的“面积模型”。学生在三年级主要是借助面积模型初步认识分数。

  (3)集合模型:用集合的“子集—全集”来表示分数。这也是“部分——整体”的一种形式, 与分数的面积模型联系密切,甚至几乎没有区别, 但学生在理解上难度更大。关键是“整体 1”不再真正是“一个整体”了, 而是把几个物体看做“一个整体”, 作为一个“单位”, 所取的一份也不是一个, 可能是几个作为一份。例如,在下图中,“蓝色长条”占全部“长条”的 。

  分数的集合模型需要学生有更高程度的抽象能力, 其核心是把多个物体看做“整体 1”。 分数的集合模型的优点是有利于用比较抽象的数值形式表示“比”与“百分比”。这时, 我们把分数看做是算子, 即把分数看做是一个映射。例如, 下面深色长条与无色长条之比为 3∶2, 或者写为 。

  分数的集合模型需要学生有更高程度的抽象能力,其核心是把“多个”看作“整体1”,所以是五年级学习分数的意义的重点,也是与三年级认识分数最大的不同。

  (4)分数的“数线模型”:(数轴上表示的线段长度、点)

  分数的“数线模型”就是用“数线”上的`点表示分数。它把分数化归为抽象的数,而不是具体的事物。

  二、各种直观模型之间的关系

  分数的“数线模型”与分数的“面积模型”有着密切的联系:一个分数可以表示“单位面积”的“一部分”,也可表示“单位长度”的“一部分”,前者是二维的,后者是线性的,是一维的。

  三、分数的“数线模型”:(数轴上表示的线段长度、点)

  “数线模型”是“数轴”的前身,是数轴的“局部放大”和“特殊化”,是用“点”来刻画“分数”。如图:

  分数的数线模型相对于面积模型和集合模型来说有一定的难度,所以教材中并没有出现用数线上的点表示分数,但是在学习了真分数和假分数后出现了在数轴上表示真分数和假分数。(在学生理解了分数的意义基础上,逐渐抽象出数线模型)如:三年级认识分数时出现是多为用分数表示段的长度:

  如:五年级认识分数意义时多用分数表示点(数轴),更抽象。学生理解比较难。

  四、数形结合 体会真分数和假分数分布范围

  把分数在数轴上直观地加以表示,这是数学素养的重要组成部分,让小学生知道正的真分数是密密麻麻地分布在(0,1)区间上的,假分数分布在≥1区间上的,加强分数和数直线之间的联系,更好的体会到数形结合的妙处。

  五、用直线上的点表示分数的方法

  1、确定各数所在的范围——看这个分数在那两个自然数之间;

  如真分数 在(0,1)即0< <1 假分数: 在(1,2)范围,即:1< <2.

  2、找出“1”在哪里?重新等分,找出分数单位,即:标明1份是(1/几)

  ①在0~1这一段容易找到分数单位 ,对于分数 、 、 顺着数出分数单位的个数;

  ②在6等分格里找出分数单位 有一定的难度,需要学生明白分数的面积模型,这里是把每2格看作一份,即:分数单位 的地方, 可以按照这个分数单位去找。

  3、对假分数 ,看有(5)个 ,顺着数过去,确定点。

8、《用分数表示可能性的大小》教学反思

  本课题我曾教学达8次之多,因为要参加市教研会赛课活动,所以在本校一遍遍地试上、反思、修改,到最后决定。期间,有许多困惑与茫然,对领导、专家、老师的建议难以取舍。但正是集中了大家的智慧,才终于不负众望,获得了一等奖,而且是第一名。我想说感谢团队,感谢大家!一路走来,有太多的辛酸和感慨。现对本课最后一次执教作以下反思:

  一、创造性地处理教材,整合信息

  在备课中,我深入研究教材,分析学生的知识起点和生活经验,了解学生的

  学习心理,对教材进行了一些处理。由“狄青百钱定军心”故事导入,通过教材例1教学用 表示可能性的大小,通过往布袋中放球,教学用表示可能性的大小。通过例2摸扑克牌教学用几分之几表示可能性的大小。再通过“幸运大转盘”、“小小设计”活动进行了挖掘、拓展、延伸,使整节课有跌宕起伏,有出彩之处。

  二、教学流程清晰,环节衔接自然

  由于是赛课(要借班),心想只要按教学预案正常进行即可,所以尽管下面几百人听课,我也无暇顾及,完全进入了状态。借班自然少不了课前沟通,我让学生介绍自己学校,并播放我校开展一系列活动的幻灯片,相互了解,并通过谈话拉近与学生的距离。再通过让学生判断某一种现象是“可能”、“一定”还是“不可能”,并用它们说一句话,引入今天要探讨的课题。

  上课伊始,播放““狄青百钱定军心”的故事,激起学生兴趣,提出问题:同时抛100枚铜币有没有可能全部正面朝上?从而引出“可能性有大有小”。教学新知时,通过猜球、摸牌等活动认识用几分之一、几分之几表示可能性的大小,实现由定性描述到定量刻画,然后通过幸运大转盘的直观演示,让学生体会无限逼近的数学思想。接下来的“小小设计”活动(按要求在盘子中放棋子),学生积极思考、操作、交流、汇报,体会到有很多种不同的放法。拓展延伸部分呼应开头,为学生释疑解惑。课堂小结简明扼要,板书完善适时、适当。总体看,教学流程清晰,结构完整。

  三、体现学生主体地位,关注学生情感体验

  教学中,我时刻关注学生的发展,让全体学生积极参与课堂,引导学生动脑、动口、动手,促进了学生思维的发展。尤其是“幸运大转盘”教学中,让学生根据生活经验说明红色区域为什么是一等奖,培养了学生的`语言表达能力与分析能力,体会两种极端可能时,由猜想——发现——逐一逼近,学生感到非常开心,感受到数学的趣味性。操作中,人人参与,各有各的放法,逐一汇报,达成一致结论,体会到数学多元化的思想,培养了学生的发散思维。

  四、语言有待进一步锤炼,细节有待进一步完善

  教师的教学语言既要风趣幽默,又要简洁精炼。尽管教学环节中的过渡语都进行了精心预设,过渡连贯、流畅、自然。但总感觉到临时性的激励性评价语言不够灵活、多样,态势语言也显得稍有欠缺,语调单一,语速还是有点快。我认为要成为一名优秀的有凝聚力的教师,必须在语言上千锤百炼,必须关注一些小的细节。因为细节决定成败。

  总之,本节课教学效果还不错,得到了大家的一致认可。但我清醒地认识到自己身上还存在着许多不足。教学之路长漫漫,吾将上下而求索,立志做一名乐于思考、勇于探索的智慧型教师。只要坚持不懈,梦想总会有实现的一天!

相关文章

推荐文章