教学反思

《平行四边形中的动点问题》教学反思

2023-08-29 14:44:17

  《平行四边形中的动点问题》教学反思

《平行四边形中的动点问题》教学反思

1、《平行四边形中的动点问题》教学反思

  在学习了平行四边形这章后,安排了一节关于动点问题的专题课,这一节课的问题设计环环相扣,体现出教师扎实的数学功底、精湛的上课艺术,思路清晰,层层递进,结构严谨,充分调动学生积极性,师生互动配合默契,使学生成为一节课的中心,是一节优秀的示范课。

  本节课紧紧围绕教学目标,由知识准备到平行四边形动点问题,进而引申到矩形和菱形的.动点问题。借助几何画板,一下子就吸引学生的兴趣,又能激发学生求知欲,调动学生积极性。同时,始终注重数学方法的总结和数学思想的渗透,注重学生能力的培养,注重学生的自我操作能力的培养,注重及时的总结梳理,整理知识结构,使这堂课生色不少。最后拓展到直击中考,增强了学生的兴趣和本课的实用性。

  整节课学生反馈较好,重难点处理比较到位,教态自然,教学节奏明快而紧凑,如果在讲解方面能再精炼点会更好。

2、《平行四边形》的教学反思

  本节课是以高效课堂教学模式为依据的小组合作学习,打破了传统教学模式,真正让学生成了学习的主人,课堂上做到了让学生全员参与,全程参与,剪、拼、观察,思考,最后得出结论,尽力使学生在单位时间内较好地探索出平行四边形的面积,体验整个公式的推导过程,并会应用,课堂上做到手、眼、口、脑全到,努力使课堂达到“轻负、优质、高效”。

  主要教学环节

  1、活动单引领。整节课的学习,讨论、交流、展示都以活动单为引领,设计问题明确,有层次,有梯度。从一开始的“温故知新”设计不同图形的数格子是为本节课平行四边形的面积做铺垫,给学生渗透转化的思想。交流合作时,给学生提出明确的合作要求:两人合作,先剪拼再观察思考,填写活动单,交流讨论,得出结论,小组展示,这样的程序让学生在讨论交流时有依托而不是盲目地讨论,防止讨论交流热闹而合作流于形式。

  当堂检测也是有一定的层次。先是根据公式计算,再次是告诉两个底一个高,让学生判断用哪一个底,目的是让学生明白底和高必须是对应的,然后是实际应用,这样有梯度的设计练习,分散了难点。让学生学习有了坡度,从而获得成就感,最后还为学有余力的学生设计了拓展延伸,使各个层次的学生都有收获。

  2、学习结果当堂展示。尤其是合作交流和巩固练习部分。这样更有利于发展学生的个性,培养学生的思维,锻炼思维和语言的条理性,而且有利于发现学生的闪光点,培养学生间的团队合作意识。比如在合作交流展示时,要两人合作,语言表达能力较好条理清晰的学生负责汇报,擅长动手操作的学生展示剪拼成长方形的过程,这样有利于发挥学生的特长,他们的学习积极性就会有更大的提高。的在小组合议为什么沿高剪开时,学生不一定能回答准确,但通过小组合议以及和其它组的质疑对抗中,问题就会迎刃而解,学生也会有一种通过讨论后,自己得出结论的喜悦,从而增强学习兴趣。

  3、汇报模式有约定俗成的语言,目的是让学生学会倾听,注意力集中,眼手脑全到,才能使课堂更有效,汇报时学生必须要有呼应,一是对知识的理解,二是对汇报学生的尊重。

  当然高效课堂这种模式还够熟练,还要进一步完善,尤其是小组建设方面,很多的细节还要在教学实践中进一步细化和加强。

  这节课我还有很多不足之处:

  1、对学生汇报没有及时跟进评价。

  2、对学困生关注不够。

  3、时间把握不够准确,还需进一步努力改进。

3、《平行四边形》的教学反思

  本节课内容是在学生已经学会长方形、正方形的面积计算已掌握平行四边形的特征,会画出平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。

  一、渗透“转化”思想,引导探究

  通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点

  二、重视操作试验,发展能力

  本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  运用转化的方法推导面积计算公式,可以有多种途径和方法,我没有把学生的思维限制在一种固定或简单的方法上,我尊重学生的想法,结果学生采用几种剪拼方法将平行四边形转化成长方形来推导面积。

  三、注重优化练习,拓展思维

  练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。

  第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。第三题考察学生灵活运用公式求平行四边形的底和高。第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。

4、《平行四边形的认识》的教学反思

  今天我教了平行四边形的认识,课前让同学们进行了以下预习:

  (1)说说生活中那些地方看到过平行四边形?

  (2)自己做一个平行四边形。

  (3)根据自己做的平行四边形探究一下平行四边形有什么特点?

  (4)有兴趣的可以做做后面的练习题。一上课我就交流了预习作业,同学们兴致很浓,做的平行四边形材料不一,有的用吸管做的正好为研究后面的第6题作准备,有的用钉子板围的,有的在纸上画了个平行四边形……做的好的得到了老师的表扬,看他们的'表情好神气哟!在探究平行四边形的特征时,有的学生竟然说到了对角是相等的。

  看来四年级的学生不可小看他们。尤其是在讨论长方形和平行四边形的相同点和不同点时,杨家豪大胆的说出当把长方形变成平行四边形时面积变小了,周长没有发生变化。

  当时我呆了,问他为什么呀?他还为同学们演示了一番。这节课我上得好开心,可能由于预习的缘故,学生的思维比较活跃,有时生成的知识也是我始料未及的。

5、《平行四边形的面积》的教学反思

  由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:

  ①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。

  ②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。

  开始,先复习长方形面积的`计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。

6、《平行四边形的认识》的教学反思

  好的开课是学生学习数学的源头,对学生的学习起着至观重要的作用。下面是我在东山小学听到的平行四边形认识的三节数学课的开课。

  A老师:

  师:昨天我们参观了某某校园,今天我们继续到13号楼去看看。(出示课件)

  问: 你发现了什么?

  生1:上面有许多的图形。

  生2:窗户是长方形的

  生3:推拉门是平行四边形

  生4:那个灯是球形的。

  生5:正方形的

  生6:扶手是平行四边形

  师:演示课件(红色出示平行四边形)

  问:谁知道这是什么图形?

  生:平行四边形

  老师在黑板上贴出各种平行四边形,让学生欣赏。

  ……

  B老师:

  师:你们喜欢变魔术吗?

  生:喜欢

  老师操作由平行四边形拉成长方形,又由长方形拉成平行四边形的过程。

  问:这是什么图形?谁知道?

  生1:正方形

  生2:平行四边形

  生3:扁扁的了

  ……

  C老师:

  师:说说你学过的平面图形?

  生1:长方形、正方形、圆形

  生2:三角形、

  师:(出示课件)图中你能找到哪些平面图形?

  生1:长方形、正方形、

  生2:平行四边形

  师:(演示课件)利用红色闪动突出平行四边形。再应用课件突出推拉门的.伸缩,给学生直观感受。

  师:你在哪里还见过平行四边形?

  生1:兰子的图案、衣服上的图案上面有平行四边形。

  生2:吃的糖果形状有平行四边形的。

  生3:有的花坛形状是平行四边形的。

  生4:教学楼的楼梯扶手下边形状也是平行四边形的。

  ……

  反思:

  从三位教师不同的开课形式反映了三位教师的不同的教学风格,A老师充分的利用了主题图的情景,创设了连贯的教学环节,在上节课的基础上进行延伸,紧密的联系生活实际,情景的创设恰到好处,体现了对学生能力的培养,情感的积累。B老师抓住看了学生的年龄特点和兴趣爱好,采取了变魔术的形式引入新课,通过一个小魔术引起学生的兴趣,在由长方形到平行四边形的变化中,让学生去观察、体验、交流,借助已有的长方形的有关知识自己去发现平行四边形的特点,用他们自己的思维方式主动地去探索,尽管学生在探索中会有失败,但在学生的反复操作和争辩中,加深了对平行四边形的认识,并发现了长方形和平行四边形的联系和区别,激发了学生的求知欲望,增强了数学的趣味性。学生的学习积极性一下子被调动起来了,学生在比较轻松愉悦的学习氛围中快乐的学习。C老师与前两个老师相比,开课比较平铺直叙,通过回顾学过的平面图形引入的学习,充分体现了数学学科的特点,并揭示了学生的认知规律,在课件的制作上有独到之处,虽然与A老师用的是同一个主题图,但在平行四边形的出现利用了闪动突出了重点,利用推拉门的伸缩突破了难点,为后面探讨平行四边形的特性作好了铺垫。

7、《平行四边形中的动点问题》教学反思

  在学习了平行四边形这章后,安排了一节关于动点问题的专题课,这一节课的问题设计环环相扣,体现出教师扎实的数学功底、精湛的上课艺术,思路清晰,层层递进,结构严谨,充分调动学生积极性,师生互动配合默契,使学生成为一节课的中心,是一节优秀的示范课。

  本节课紧紧围绕教学目标,由知识准备到平行四边形动点问题,进而引申到矩形和菱形的.动点问题。借助几何画板,一下子就吸引学生的兴趣,又能激发学生求知欲,调动学生积极性。同时,始终注重数学方法的总结和数学思想的渗透,注重学生能力的培养,注重学生的自我操作能力的培养,注重及时的总结梳理,整理知识结构,使这堂课生色不少。最后拓展到直击中考,增强了学生的兴趣和本课的实用性。

  整节课学生反馈较好,重难点处理比较到位,教态自然,教学节奏明快而紧凑,如果在讲解方面能再精炼点会更好。

8、《平行四边形》的教学反思

  20xx年5月9日在**市第一小学四年级三班上了我人生中第二次真正意义上的数字课《平行四边形》这节课我主要让学生通过观察操作等活动经历、体验、感受平行四边形的基本特征。对这一堂课不是很满意,因为之前面对的都是自己的同学扮演小学生或者是讲微课,脑袋里想让学生说什么就说什么,而现在面对的.是一个个真正的小学生,没有充分的预设小学生的情况,导致和自己的预想有些出入。我整理了以下不足之处。

  1、缺少课堂评价语言,缺乏语言组织能力,课堂也不活跃,没能水到渠成。

  2、不能拖拖拉拉在每一个环节都是平均用力没有突出重点,时间准备不充分,还导致准备的课堂活动练习题没讲就下课了。

  3、组织教学欠缺,不能吸引学生注意力只能靠着提高分贝来吸引学生。

  4、在验证平行四边形对边平行时,没有去规范他们每一步该做什么,而是让他们照着样子做,这种教法学生很有可能出错。

  5、学生准备了平行四边形三角形等学具由于自己经验不足,控场能力不够,不能很好的掌控住学生。

  6、数学教学的核心是促进学生思维的发展,培养学生数学思维的能力。这一点我做的完全不够,在课堂中我只顾讲授知识,并没有关注学生思维能力发展,例如抛出一个问题后没有去追问。

  虽然在课堂中一些地方不够完善还需要改进,但是其实在一堂课后,都会留下或多或少的遗憾,教学是一门永远有着遗憾的艺术。希望自己能够用心思考,不断提升。让课堂更加精彩。

相关文章

推荐文章