《正比例的量》教学反思
1、《正比例的量》教学反思
上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:
(1)被除数一定,商和除数
(2)圆柱的体积一定,圆柱的底面积和高
(3)总价一定,单价和数量
(4)三角形面积一定,底边和高
(5)小麦每公顷产量一定,种小麦的公顷数和总产量
(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的量。具体的说,就是两个量是否具有相乘、相除的关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积*高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的'不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底*高/2,这个的变式主要是学生没有利用三角形的面积的推导,底*高=2*三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。
2、《正比例的量》教学反思
在“成正比例的量”的教学过程中,我主要采用了新型授课的方法,发挥了教师主导,学生主体的教学优势,让学生成为课堂的真正主人,让他们尽情表达对于知识的见解,让他们深深感受到这间教室是属于他们的,这节课是属于他们的。
课前我带领学生做完课本例1的实验,然后就把课堂交给学生,让学生在结合实验,独立自主的完成表格。再让学生观察整个实验过程,把自己看到的和想到的说出来。让学生讨论得出两种相关联的量,以及他们之间所满足的关系。在让学生自己阅读课本给出的成正比例的量和正比例关系的定义,看看他们说的对不对。这一过程让学生感受都成功的喜悦,从而培养学生的学习乐趣。
最后老师做出课堂总结,强调教学的重难点:
条件:(1)由于一种量的变换,引起另一种量的必然变化(两种相关联的量)。(2)这两种相关联量的比值一定。这两种量叫做成正比例的量。这两种量之间的关系叫做正比例关系。
如果用X和Y代表两种相关联的量,K代表一个定值。那么可以用数学式子Y:X=K 表示。
3、《正比例的量》教学反思
这节《正比例的意义》的教研课,已经讲完大约一个月的时间了,可是我的教学反思却迟迟没有交上来,不是没有反思的地方,而是反思的地方太多了,我都不知道该从如何下手去写了。这节《正比例的意义》是北师版六年级下册的内容,是学生在学习了比的概念及求比值的基础上进一步学习比例,又是反比例和比例尺学习的基础。引导学生理解正比例的意义,学会分析两个量是否成正比例关系的方法是本课的重点。
考虑到学生学习的难度和班级的具体情况,我的这堂课采用以学定教的生本课堂教学模式。我没有用课件,没有在多功能大厅里讲,没有事先对孩子进行提示(以往在讲教研课的时候都有“作秀”的嫌疑),只是按照我校课改的方向,课前给孩子布置了学案,而且是两个学案,让学生自由的选择其中的一个,让孩子通过自学,完成学案。至于课堂上会出现什么情况,我真的是毫无所知,不像以往,在哪个环节讲什么学生怎么答,我心里有数,可是这次不一样。我就是要把实际中的课堂模式展现给同事们和领导。
课前我也做了大量的准备,认真的备教材备学生。把学案、习题写在了大白纸上,让同学们一目了然。在整个教研的过程中,虽然我完成了预期的教学目的,学生也能把学案上的问题归纳概括出来,但是课堂气氛不活跃,学生不主动举手,要点名才能站起来回答,也不能主动的提出疑问。小组讨论的时候也不热烈。流于形式了。更没有好的生成。还是没有脱离原来的教学模式。
课后呢,我在想课堂气氛不活跃,可能一小部分的原因吧,是由于六年级的孩子大了,发言的时候有了顾虑,怕说不好或不对,另一部分我想就是这个形式可能孩子们还没有适应过来,换一句准确的话,就是做为老师的我还没有引导孩子主动的去发言去探索。实施新课改,课前给学生布置学案,我大概到我讲这节教研课的时候有一个月的时间,还真的没有摸到门路,只是摸着石头过河。老师都如此,何况孩子们。今后这就要看老师的驾驭、引导的能力了。
当然也不都是不足,课后我把学案拿过来看了看,学生都能把学案完成,而且归纳的也不错,只是不善于表达而已,这也是说明课改是正确的,它激发了学生的求知欲。而且我也告诉了大家,没有条件用多媒体教学时,在班级用这种最古老最常见的小黑板的方式出现问题,也不错呦。
总之了,我还在摸索中前进。还有很多值得反思的地方,但心里有却写不出来。哎。
4、《正比例的量》教学反思
数学教学要让学生学习有价值的数学和必需的数学,就应该密切联系学生的生活,使学生感到数学与生活密不可分,数学是生动的、有趣的,而不是单调的、枯燥的。数学教学中应该培养学生学会用数学的眼光观察问题、分析问题,使数学问题生活化,生活问题数学化,从而激起学生学习数学的积极性和学好数学、用好数学的自信心。
正比例意义的教学,研究的是数量关系中两种相关联的量的变化规律,如何使这个抽象的内容变得生动又形象,本课进行了设计。
课始,教师联系生活实际导入,让数学从生活中来。通过教师的举例,说明日常生活和学习活动中的许多事物相互之间有一定的联系,如天气和穿衣、秋风和落叶以及学习方法和学习效益等。进而让学生自己举例,使学生进一步体会到生活和学习中确实有许多事物相互之间有着密切的联系,一个量发生变化,另一个量也随着变化,从而非常自然地引入相关联的量而且它们之间具有更强的规律性,这样即使学生感受到数学和生活的联系,又有效地激起学生探求新知的欲望。
最后,联系生活结束全课,让数学到生
中去。在学习了正比例的意义后,让学生联系生活解决实际问题,使学生深切地体会到数学知识和生活实际的紧密联系。教学中用教师口述,学生随机口答的方式,把学生带入特定的生活情景,有效解决问题。先要求同学们有序的走出教室,每次出去两名同学,从而建立出去的人数和次数成正比例关系的条件。这样即使学生感到数学就在我们身边,又使课堂教学形成最后的高潮。
5、《正比例的量》教学反思
成正比例的量是人教版六年级下册中的一个内容,是在学生学习了比例的意义和基本性质之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并初步了解表示成正比例的量的图象特征,并能根据图象解决有关的简单问题。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。
不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说。
6、《正比例的量》教学反思
作为一位到岗不久的教师,我们要在课堂教学中快速成长,借助教学反思我们可以快速提升自己的教学能力,那么问题来了,教学反思应该怎么写?下面是小编精心整理的《正比例的量》教学反思范文,希望能够帮助到大家。
成正比例的量是人教版六年级下册中的一个内容,是在学生学习了比例的意义和基本性质之后的一个内容,通过学习,使学生理解正比例的意义,会正确判断成正比例的量,并初步了解表示成正比例的量的图象特征,并能根据图象解决有关的简单问题。
根据教材和内容的特点,我选择了师生互动,以教师的“引”为主导,学生为主体,让学生在互动交流中去理解成正比例的量这一概念。首先,让学生弄清什么叫“两种相关联”的量,我引导学生从表格中去发现时间和路程两种量的变化情况,在变化中发现:路程随着时间的变化而变化的,同时引导学生初步感知成正比例的`两种量的变化方向性。其次,我进一步引导学生考虑:路程随着时间的变化而变化,在这一变化过程中,有什么规律呢?学生看了表之后,发现路程和时间比的比值是一样的,都是90。这时,教师也举了一个例子,就是450÷9=50,从反面的例子,让学生理解相对应的路程和时间的比的比值都是90,从而突破了正比例关系的第二个难点。两种量中相对应的两个数的比会一定。把学生对成正比例量的意义的理解成一系统。由于学生还是第一次接触这一概念,之后,例2的学习还是让学生对比着例1来自己理解数量和总价的正比例关系。最后,在两个例题学习的基础上总结出成正比例量的意义,把这意义从局部的路程和时间、数量和总价推广到其他数量之间的关系。
不足之处是在练习方面,学生找不到哪些数量成正比例时应让学生讨论,每个正比例关系都应让学生互相说一说,这样或许会懂得更多。
7、《成正比例的量和成反比例的量》的教学反思
上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:
(1)被除数一定,商和除数
(2)圆柱的体积一定,圆柱的底面积和高
(3)总价一定,单价和数量
(4)三角形面积一定,底边和高
(5)小麦每公顷产量一定,种小麦的公顷数和总产量
(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的量。具体的说,就是两个量是否具有相乘、相除的关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积*高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的'不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底*高/2,这个的变式主要是学生没有利用三角形的面积的推导,底*高=2*三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。