教学反思

八年级数学下册《一次函数》教学反思

2023-10-10 14:44:32

  八年级数学下册《一次函数》教学反思

八年级数学下册《一次函数》教学反思

1、八年级数学下册《一次函数》教学反思

  本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的`值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

  通过本节课的教学发现:

  1、有一小部分的学生还是不懂得看函数图像。

  2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。

  3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

  另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。

  1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。

  2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

2、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

3、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  我又一次后悔自己没用录像机记录下课堂上学生精彩的辩论,要知道这种对抗式的辩论是课前无法预设的,值得庆幸的是可以赶紧利用吃饭时间回味并用文字把本学期难得遇到的这次“精彩”整理下来。

  今天早上第四节课要处理第二节没处理完的《分数乘除法应用题对比练习》导学案,第二节临近下课时我说要各组把本组错误最多的题或者不会的题出示在黑板上,其中第四组的组长曲晓燕带着小黑板上了讲台,小黑板上出示的题目是:商店运来一批苹果,其中苹果有180千克,比梨多九分之一,苹果比梨多多少千克?她引导大家分析完这道题后,我心里正想着这一组抓住了这份导学案最容易出错的一道题,该如何表扬他们时,林立浩一个箭步冲上讲台,说这道题还有一种解法:算梨的重量可以用180+180÷,当时有个别学生小声嘀咕:“该用减法而不是加法,因为最后问题是苹果比梨多多少千克?”我重述后林立浩说:“我算的是梨的重量,最后再用苹果的重量减去梨的重量就行了。”还有学生欲言又止,看来有学生知道这种方法不对,但不知道为什么不对,我开始征求学生的意见:“同意曲晓燕这种做法的举手”呼啦啦几十个学生都举手了,“同意林立浩这种解法的举手”只有吴州航、吴欢欢、张翼泽等五六学生,于是我把全班分成两大组讨论你如何把对方说服,其中同意林立浩这种解法的五六个同学编为B组,围在一起讨论。

  巡视时,我发现第一小组的一个学生说:“老师,照他这样算,答案都1000多了,那就不对!”还有一个学生说:“这两个算式利用的不是除法的性质。”我说:“除法的性质是什么?”他无言。另一个学生想补充但是说半截好像发现自己说错了。B组的成员已经开始在黑板上画线段图了。

  辩论开始,B组的林立浩开始指着线段图为大家讲解,梨多苹果果180千克?

  在讲解过程中有很多漏洞,同学们一一指出,他甚至把线段图改为多180千克?

  梨苹果果

  最后临下讲台时,他自言自语:“错了,错了”没想到他的两个接班人继续上来讲述他们的思路。

  三个B组成员讲完之后,付晓霞才站起来反驳:单位“1”未知用除法,用几分之几对应的量除以几分之几,而你们的量和分率根本就不对应,也就是说苹果的重量180千克对应的分率不是九分之一。紧接着禹青青站起来说:他们的线段图画的就不对,苹果的重量180千克应该是这一段,她边说边上讲台用红笔标识。

  梨多苹果果180千克?

  而除法的性质没有同学提,在我的提示下,平时很大方的赵鹏涛才扭扭捏捏地站起来说,两个算式之间不是利用除法的性质,问起除法性质的内容,他说a÷(b+c)=a÷b+a÷c,又暴露出一个问题,此时下课铃已经响起。

4、北师大版五年级数学下册《分数除法》教学反思五年级数学教学反思

  教学分数除以整数时,课堂上,我帮助学生首先理解了分数除法的意义,接着出示例题:把1米长的铁丝平均分成3段,每段长多少米?学生列出算式后,接着探究算法。出乎我意料的是学生经过思考后,争先恐后地说出了5种算法。学生的每种算法把算理都解释得非常清楚。我也被学生的情绪带动起来,对他们的每种算法不由得说:“你的想法真独特”。学生也被他们自己能够想出多种算法所鼓舞着。我接着让他们继续计算,使学生发现上述的方法并不适用于所有的计算题目。只适合于用乘倒数和商不变的性质解决。通过讨论归纳出:分数除以整数(0除外)等于乘这个数的倒数是最具普遍性的方法。学生获取的这个结论是在自己充分感知的基础上得出的:他们通过计算实践,逐步明确通用的方法只有两种(即乘倒数和运用商不变的性质)。

  下课以后,我回忆这一节充满了学生思维智慧的数学课,使我感悟颇深。《新课标》指出:学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。在教学中只有确立了学生的主体地位,优化学习过程,才能促使学生的自主学习过程。在以往的教学中,教师往往是代替学生发言,代替学生思维,代替学生说出结论,这根本不能体现学生的主体性。久而久之会慢慢抹煞孩子的创新意识。在教学中教师要培养学生的创新意识,发挥学生的主体性,不代替学生去思维。在计算教学中,一些教师怕学生思考,会出现思维分散,偏离重点,尤其是一些公开课,更不敢放手让学生去思考。这实际上是教师缺乏对学生的正确引导,导致不敢放手让学生去思考,最后只能自己替学生思考、归纳、总结。计算教学要体现学生思维的开放性。鼓励学生解决问题策略的多样化,就要让学生成为学习的主人,把思考的空间留给学生。在本课中,我比较注重学生思维的开放性,充分让学生自己去利用已有知识和经验,去寻找解决的计算方法,学生通过长期的训练,已能通过各种思维去寻找解决的办法。每种方法都可以看作是一种创新意识的体现。我认为这样的思维活动体现了以学生为主体的学习活动,对学生理解数学是非常重要的。学生的学习不是被动地吸收课本上现成的结论,而是一个亲自参与的充满丰富思维活动的实践和创新的过程。同时在数学课堂教学中我注重对学生的评价,力争做到评价及时、准确。促使每个学生自主地发展,逐步达到培养学生自主学习、自主创新的能力,全面提高素质。

5、八年级数学下册《一次函数》教学反思

  本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的`值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

  通过本节课的教学发现:

  1、有一小部分的学生还是不懂得看函数图像。

  2.用一次函数解析式解决实际问题时,不注意自变量的取值范围。

  3.结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

  另外,运用知识解决实际问题是学生学习的目的,是重点,但也是学生的难点,需要慢慢的加强训练。

  1.一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。

  2.我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

6、八年级数学下册《19.2.3一次函数与方程、不等式》教学反思

  本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的`观点把以前学习的方程与不等式进行整合。

  本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的范围等类型的题目。

  另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。

7、七年级数学下册《一次函数与一元一次不等式》教学反思

  例1:请画出函数y=-3x+12的图像,你能利用图像解决下列问题吗?

  (1)方程-3x+12=0的解(2)不等式-3x+12>0的解集.

  (3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?

  问题一提出,就有学生不假思索,答案脱口而出,前两问也太简单了吧?我提醒学生注意题目要求,这时有学生开始画函数图像。让学生自己动手,画出一次函数y=-3x+12的图像,目的是让学生从画图的`过程中感受从左至右,直线是呈“下降”趋势的。即y随x的增大而减小。对于前两问,学生还比较好理解,但到第3问,有些学生就找不到答案了。这时就要引导学生从第2问,开始延伸,当解-3x+12>0,即函数值为正数时,对应的函数的图像在x轴的上方,y>0时,坐标系中表示的是一个平面区域,在这个区域中找出对应的自变量x的取值范围即为不等式的解。让学生对第3问,再次进行探究,由图像找出函数值在-6--6之间的部分,对应地可以找出自变量x的取值范围。要求学生能在函数图像上找到这个区域,老师再用多媒体进行动态演示。进一步激发学生思考,你能用其他方法解决这个问题吗?学生能联想到第3问也可以利用解不等式组的方法求出x的取值范围。通过本题的解决,让学生初步感受不等式与方程、函数的内在联系

相关文章

推荐文章