说课稿

《用转化的策略解决问题》一等奖说课稿

2023-08-17 11:22:31

  《用转化的策略解决问题》一等奖说课稿

《用转化的策略解决问题》一等奖说课稿

1、《用转化的策略解决问题》一等奖说课稿

  我今天说课的内容是国标版六年级下册第六单元的《用转化的策略解决问题》。这是在学生已经学习了用画图、列表、一一列举、倒推、替换和假设等策略解决问题的基础上进行教学的。通过本课的教学,可以进一步增强学生的策略意识。

  本课时教材安排了一道例题,一个试一试和一个练一练。例题通过引导学生将稍复杂的图形转化为简单的图形,感悟转化策略的便捷。然后引导学生回忆运用转化的策略曾经解决过哪些问题,体会转化策略可以化繁为简,化未知为已知。初步形成对转化策略的认识。试一试、练一练都是引导学生从不同的角度进行转化,使学生体会到了转化的价值。

  通过以上对教材的理解,结合学生的已有经验,我拟定了这样的三维目标:

  1、使学生初步学会用转化的策略分析问题,解决问题,并根据问题的特点确定具体的转化方法。

  2、使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

  3、使学生进一步积累运用转化策略解决问题的经验,获得解决问题的成功体验,提高学好数学的信心。

  本课的教学重点及难点是学会运用转化的策略分析问题,灵活确定解决问题的思路。

  结合上述对教材和学生的分析情况,我预设如下,分四个教学环节:

  第一环节:创设情境 故事引入

  借助媒体显示司马光砸缸的画面,学生讨论这个故事中大家采取了怎样的方式救人?司马光采取了怎样的方式救人?他为什么要这么做呢?

  学生讨论后教师小结:找大人来救太慢,落水儿童可能有危险,换一种方式——砸缸,能更快的救出落水儿童,司马光真聪明。在我们数学研究的过程中,也常常把一种问题转化成另一种问题。揭题:今天我们就来研究转化这种解决问题的策略。

  以司马光砸缸的故事导入新课,一方面可以激发学生的兴趣,另一方面可以使学生初步体会转化可以使问题更快得到解决。

  第二环节:互助合作 探究策略

  分三层, 第一层:探索方法

  借助媒体显示例题图:下面两个图形的面积相等吗?

  学生仔细观察两个图形面积是否相等,并在小组里交流自己的想法。教师巡视。

  学生讨论得差不多之后,指名交流。学生可能会说用数方格的方法进行比较,此时教师要提醒学生先把图中的方格线补画完整再数;如果有学生直接说出分别把两个图形转化为长方形,那么就请学生来说说是怎样进行转化的,并根据学生说的情况在媒体上一步一步演示转化的过程。

  学生交流后教师再让学生说说是怎么才能更快的比较这两个复杂图形的面积的。从而明确是因为把它们转化成了长方形,所以能很快比较。

  这一层次,学生通过思考、交流,同时教师利用媒体的演示,和语言的归纳,使学生明确地感受到了转化的功能。

  第二层:回忆价值

  教师引导学生回忆:在以往的学习中,我们曾经运用转化的策略解决过哪些问题呢?

  首先学生回忆,并先在小组里交流。小组交流后全班交流,教师让学生充分发表自己的想法,同时选择性的板书,当学生提出实例后,让学生说一说转化的具体方法。

  接着结合板书,教师提问:这些运用转化的策略解决问题的过程有什么共同点?容学生思考片刻,若学生说不出来,就教师说:这些都是把新的问题转化成熟悉的或已经解决过的问题。

  那以后再遇到一个陌生的问题时,你会怎样想呢?可以让学生说一说。

  本环节通过引导学生回忆转化策略在以往学习中的运用,体会转化通常是把一个稍复杂的、新的问题转化成简单的、已经解决的问题。

  第三层:运用策略

  1、媒体出示试一试中的'算式,提问:这道题可以怎样计算?这个算式有什么特点?

  学生观察、交流,教师可以适当引导:这几个分数的分子都是1,分母分别是几个2的乘积。

  接着媒体显示算式右边的正方形图,教师引导学生观察算式和图形,哪部分表示这几个数的和,建立数形对应的概念。学生仔细观察两者间的联系,明确,原来的算式可以转化成1-1/16进行计算。

  2、媒体出示练一练方格纸上的两个图形,让学生思考怎样计算右边图形的周长比较简便。

  学生先独立思考,再进行计算,交流时说说是怎样想的,运用了什么策略。

  根据学生交流,教师小结:同学们这是把稍复杂的图形转化成简单的图形。

  此环节通过引导学生解决不同转化类型的题目,使学生体会到转化的策略并不是一成不变的,而应从多角度灵活地分析问题。

  第三环节:拓展练习 巩固策略

  第一层:基础练习

  1、P74第2题,学生填好之后说说是怎样想的,说出转化的方法。这里我借助媒体演示重点引导学生讨论第3小题。

  2、P74第3题,学生先说一说怎样转化再计算。

  第二层:综合运用

  1、我改编P74第1题,16人参加乒乓球单打比赛,单场淘汰制,一共要进行多少场比赛才能产生冠军?先帮助学生理解单场淘汰制的含义。学生思考片刻后如有学生能说出来,就让他说完之后媒体再显示图像,如没有学生能说出来,就先显示图形,再引导学生思考:产生冠军就是要淘汰15人,所以要比16-1=15场。

  2、在此基础上作一个变式:如果16人参加的是双打比赛,也是单场淘汰制,那要比多少场才能决出冠军呢?

  先让学生思考,然后再交流。要说明白16人参加双打比赛,每2人一组,分成了8组,要淘汰7组,所以要进行7场比赛。

  3、媒体显示一个不规则金属零件,要测量的体积,你有什么好的方法吗?

  学生交流方法,最后教师肯定转化的策略

  整个练习过程,从基础的模仿训练到生活当中的综合运用,层层深入。激发学生从多角度灵活的运用转化的策略,确定转化的方法,能力得到了提升。

  第四环节:全课总结 感悟策略

  组织学生说说今天我们研究了什么策略,这种策略有什么优势

  学生交流、互补,明确运用转化的策略可以把问题化繁为简。

2、《用转化的策略解决问题》一等奖说课稿

  教学目的:

  1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

  2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养的灵活性。

  教学重点:

  掌握用转化的策略解决分数问题的方法,增强策略意识。

  教学难点:

  根据具体问题,确定转化后要实现的目标和转化的具体方法。

  教学过程:

  一、看谁的联想最多?

  出示:男生人数是女生的2/3 看到含有分率的句子,你能想到些什么?

  学生可能说:

  (1)把女生人数看作“1” ——找单位“1”

  (2)男生人数有这样的2份,女生人数有这样的3份。

  (3)一共有这样的5份

  (4)女生比男生多1份 ——份数

  (5)男生人数占全班人数的2/5,女生人数占全班人数的3/5

  (6)女生是男生的3/2 ——分数

  小结:看到含有分率的信息,我们可以找单位“1”的量,也可从分数、份数等方面来考虑。

  二、新授

  1、完整例题2:在这个信息前加上条件“六3班一共有50人”和问题“六3班女生有多少人?”

  2、说明:这是一道分数问题,解决分数问题的常规思路是怎样的?请你用常规思路来解决这个问题。

  3、学生独立完成,教师巡视指导。

  4、指名交流解题思路。

  5、提问:除了常规思路,这题还可以怎样解决?你是怎样想的?

  6、学生独立完成,小组交流。指名交流。

  学生可能想到:

  (一)将关键句转化成份数来理解“女生有3份,男生有2份,一共是5份”

  50÷(3+2)=10(人) 10×3=30(人)

  (二)将关键句转化成分数来理解“女生占全班人数的3/5”

  50×3/5=30(人)

  7、结合学生回答追问:为什么要将关键句转化成“一共有5份”、“女生是总人数的3、5”?而不转化成别的?体会不管转化成份数理解还是分数来理解,都要转化成和已知条件有关的信息。

  8、小结:我们原来解题时,是把女生人数看做单位“1”,所以只能用方程(或除法)解答。今天我们学习了转化策略,就可以把单位“1”转化成题目中的已知量,这样就变成了一道求一个数的几分之几是多少的应用题,可以用乘法计算。(美术组人数是已知的,要求的是女生人数,找到女生人数和总人数之间的关系,就可以直接用乘法计算了)

  三、巩固练习

  1、练一练:学校美术组有35人,是合唱组人数的 5/8 。学校合唱组有多少人?

  (1)你打算怎样转化?(合唱组的人数是美术组的几分之几?可以怎样列式解答?)

  (2)反思:为什么把美术组人数是合唱组的 5/8转化为合唱组的人数是美术组的8/5。

  (3)小结:在解决有关分数的实际问题时,只要把题目中的问题转化成已知条件的几分之几,就可以直接用乘法计算,使解题的方法变得简单。

  板书:问题转化成已知条件的几分之几。

  2、练习十四5:

  (1)看图填空。

  绿彩带

  红彩带

  绿彩带比红彩带短 2/7 ,红彩带比绿彩带长 ()/() 。

  (2)一杯果汁,已经喝了 2/5 ,

  喝掉的是剩下的 ()/() ,剩下的是喝掉的 ()/() 。

  3、练习十四6

  (1)白兔和黑兔共有40只,黑兔的只数是白兔的 3/5 。黑兔有多少只?

  黑兔只数占白兔、黑兔总只数的 ()/() 。

  (2) 小明看一本故事书,已经看了全书的 3/7 ,还有48页没有看。 小明已经看了多少页?

  已经看的页数是没有看的页数的 ()/() 。

  4、只列式,不计算。(说说你是怎样转化的)

  (1)修一条长30千米的路,已经修的占剩下的 2/3 ,已经修了多少千米?

  (2)山羊有120只,比绵羊少 1/6 ,绵羊有多少只?

  (3)甲数是乙数的2/3,乙数是丙数的3/4,甲、乙、丙三数的和是180,甲、乙、丙三个数各是多少?

  5、有3堆围棋子,每堆60枚。第一堆的黑子和第二堆的白子同样多,第三堆有 1/3是白子。这三堆棋子一共有白子多少枚?

  6、思考题:

  有两枝蜡烛。当第一枝燃去4/5 ,第二枝燃去 2/3 时,他们剩下的部分一样长。这两枝蜡烛原来的长度比是( ):( )。

  全课小结:今天这节课,我们学习了什么知识?你有哪些收获?

  板书设计:

  用转化思路解答分数除法应用题

  繁 简

  用方程解答: 用乘法解答:

  解:设女生有x人。

  x+2/3 x=35

  5/3x=35 35×3/5=21(人)

  x=21

  答:女生有21人

3、《用转化的策略解决问题》一等奖说课稿

  教学目标:

  1、让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

  2、让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。

  3、感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。

  教学重点:

  掌握用转化的策略解决分数问题的方法,增强策略意识。

  教学难点:

  根据具体问题,确定转化后要实现的目标和转化的具体方法。

  教学方法:

  讨论、观察

  教学手段:

  多媒体课件

  教学过程:

  一、复习引入

  老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。

  出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。

  提问:在刚才的做题、交流过程中,你有什么感受或发现?

  二、新授,尝试运用转化的策略解决问题

  1、教学例2

  课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的。

  能不能转化成更简单的算式?

  出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?

  引导:看图想一想,可以把这一算式转化成怎样的算式计算?

  提问:这时该怎么做呢?学生独立列式计算。

  和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?

  小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。

  2、练一练

  三、练习运用转化策略

  1、练习十六第5题 比较几种方法哪种更简单呢?你有什么体会呢?

  2、练习十六第6题

  出示问题,指导学生理解图意。

  明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。

  如果不画图,有更简便计算方法吗?

  进一步提问:如果有64支球队,产生冠军一共要比赛多少场?

  3、练习十六第7、8、10题

  四、总结故事启迪,领悟转化的技巧

  五、指导完成思考题

  弄清27+19的和就是最大长方形的长与宽的长度之和。

  作业布置 练习十六第9、11、12、13题

4、《用画图策略解决面积计算的问题》教学设计一等奖

  教学目标:

  1、使学生在解决有关面积计算的实际问题过程中,学会用画直观示意图的方法整理相关信息,能借助所画示意图分析实际问题中的数量关系,确实解决问题的正确思路。

  2、使学生在对解决实际问题过程的不断反思中,感受用画直观示意图的方法对于解决问题的价值,体会到画图整理信息是解决问题的一种常用策略。

  3、使学生进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。

  教学重点、难点:

  用画直观示意图的方法解决有关面积计算的实际问题。怎样将题目的信息通过画图来直观表示出来,并结合图进一步分析数量关系。

  教学准备:多媒体课件、1-5号学习画图纸、一张长方形的纸片。

  教学过程:

  一、积累铺垫:

  猜一猜:

  呈现:

  一个长宽不相等的长方形,小芳想把长增加2厘米。

  小军想把宽增加2厘米。你们猜,谁的做法增加的面积大呢?

  师:你们想什么办法来证明你的猜测是对的呢?

  师:什么叫长增加?什么叫宽增加?

  师:观察这两幅图,长方形的长增加时宽有变化吗?宽增加时长有变化吗?

  师:涂色部分表示什么?一眼看出谁的做法增加的面积大?

  小结:看来画图是个好办法!

  质疑:奇怪!同样都是增加2厘米,为什么增加的面积不一样大呢?

  小结:什么决定了长方形面积的.大小?

  做一做:

  通过折一折的方法能使这张长方形纸的面积减少12平方厘米

  (呈现图形)

  1、学生小组研究 教师参与

  2、实现小组汇报

  师小结:同学们在做的过程中知道了什么是长减少,什么是宽减少。

  画一画:

  呈现:

  一个长方形的长是5厘米,宽3厘米,长增加2厘米,面积增加多少平方厘米?

  师:谁会计算?

  师追问:为什么用32呢?能用个好方法让人一眼就看出来吗?

  启示学生使用1号图画图

  您现在正在阅读的苏教版《用画图策略解决有关面积计算的问题》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!苏教版《用画图策略解决有关面积计算的问题》教学设计师:画好后把相应的数据标出来,给增加的面积涂色。

  师:从图上很清晰的看出增加的面积怎么算?

  小结:画图真是个好办法!

  过渡:这节课我们就运用这个方法解决一些实际问题。

  板书:解决问题:寻求对策

  二、初步感知

  呈现:梅山小学有一块长方形花圃,长8米,在修建校园时,花圃的长增加3米,这样花圃面积就增加18平方米,原来花圃的面积是多少平方米?

  师:思考一下,原来花圃的面积是多少平方米?

  师:选择2号图请大家独立的画一画,在相应的位置标出数据。

  1、 生独立画图,教师巡视指导

  2、 展示学生画图,及时补充

  3、 小组里说说

  4、 汇报并板书(略)

  师小结:看起来很复杂的问题,通过画图就可以把题中的信息表示的更清楚,分析数量关系更直观。画图的作用大吗?

  三、再次体验

  呈现:小营村原来有一个宽20米的长方形鱼池,后来因扩建公路,鱼池的宽减少了5米,这样鱼池面积减少了150平方米,现在鱼池面积多少平方米?

  师:读完题首先想到要干什么?

  师:先和旁边的同学商量一下,减少5米该如何画。

  1、生画图

  2、独立解答

  3、汇报板书:(略)

  4、与例题比较

  四、全课总结

  师:今天我们都用什么方法来解决问题的?解决这些问题时,如果不画图会怎样?。

  自己评价一下自己的学习表现。

  五、课外拓展

  课后再收集一些与图形面积计算有关的实际问题,并试着用画图的策略加以解决。下节课把你收集的问题以及你解决问题的过程与同学交流。

5、五年级下册数学《用转的策略解决问题》教学设计一等奖

  教学目标:

  1.使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  2.使学生通过回顾曾经解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

  3.使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得的.成功的体验。

  重点难点:

  理解转化策略的价值,丰富学生的策略意识,初步掌握转化的方法和技巧。

  教学方法:

  讨论、观察

  教学手段:

  多媒体课件

  教学过程:

  一、故事引入,初步体验转化。

  阿普顿是美国普林斯顿大学数学系毕业的高材生,对没有大学文凭的爱迪生有点瞧不起。有一次,爱迪生让他测算一只梨形灯泡的容积。于是,他拿起灯泡,测出了他的直径高度,然后加以计算。但是灯泡不具有规则形状:它像球形,又不像球形;像圆柱体,又不像圆柱体。计算很复杂。即使是近似处理也很繁琐。他画了草图,在好几张白纸上写满了密密麻麻的数据算式,也没有算出来。

  爱迪生等了很长时间,也不见阿普顿报告结果。他走过来一看,便忍不住笑出了声,你还是换种方法吧!只见爱迪生取来一杯水。轻轻地往阿普顿刚才反复测算的灯泡里倒满了水,然后把水倒进量筒,几秒种就测出了水的体积,当然也就算出了灯泡的容积。这时羞红了脸的阿普顿傻呆呆地站在一旁,恨不得找条地缝钻下去。

  这个故事让你联想到什么?将求不规则物体的体积转化成求水的体积,用到了一个重要的策略转化。

  二、观察交流,明确转化的策略

  1.出示例1

  师:这两个图形像什么啊?你觉得这两个图形的面积相等吗?仔细观察图形,你准备怎样比较这两个图形的面积。

  师:思考后再在小组里交流自己是怎样想的。

  学生可能有两种想法:

  (1)数方格计算每个图形的面积后再比较。提醒学生把方格线补画完整。(2)将两个图形分别转化成长方形,再比较它们的面积。

6、《解决问题的策略》的教学设计一等奖

  教学内容:苏教版五年级(上册)第63-64页例1、例2

  教学目标:1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。

  教学过程:

  一、课堂导入

  同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!

  二、教学例1

  1、导语:我们来看看第一个问题。

  出示:园艺工人用6根1米长的'栅栏围成一个长方形花圃,他是怎样围的?

  (1) 师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?

  (2)学生汇报 板书:长(m)2

  宽(m)1

  师:说说你是怎样想的?和他想得一样的同学请举手。

  小结:看来这个花圃只有一种围法。

  2、导语:我们再来看看另一个花圃:

  出示:园艺工人准备用10根1米长的栅栏,围成一个大一些的长方形花圃,有几种不同的围法?

  (1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。

  (2)学生汇报 板书:长(m)4 3

  宽(m)1 2

  师:你有几种围法?你呢?

  师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)

  小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),“一一列举”这就是我们今天要学习的新策略。

  3、导语:下面请同学们用这个策略来解决一个问题。

  出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?

  (1)请你思考之后,把不同的围法一一列举到第一张表格上。

  (2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)

  师:这位同学列举了三种围法,他找全了吗?你有几种围法?那他缺哪一种? (教师在三种围法的表格中,填写第四种围法)现在全了吗?这张表格中剩下的空格还要不要填了?

7、《解决问题的策略》教学设计一等奖

  [教学内容]

  运用加法和减法两步计算解决问题 (p4 例1)

  [教学目标]

  1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法。

  2、学会运用加法和减法两步计算解决实际问题。

  3、在解决问题的过程中,让学生感受可以用不同的方法解决问题。

  4、初步培养学生发现问题、提出问题、解决问题的能力。

  [教学重点]

  学会运用加法和减法两步计算解决实际问题。

  [教学难点]

  培养学生在实际生活中多角度观察问题、发现问题、提出问题、解决问题的能力。

  [教学过程]

  一、情景导入,激发兴趣

  观察主题图问:图上有谁,他们在干什么,还有想去做什么的,数一数分别有多少人?这幅主题图将告诉我们什么数学知识呢?我们具体来看。

  二、合作交流,探索新知

  1、引导学生观察木偶戏的情景图。

  (1)说一说,图上给我们提供了那些信息?(文字信息:原来有22人在看戏,又来了13人,图中信息:走了6人)

  (2)要解决什么问题?(有多少人在看木偶戏)

  2、小组交流讨论,提出解决问题的方案。

  3、选派组内代表在班中交流解决问题的方法。

  4、把学生解决问题的方法记录在黑板上,试着用文字说说每道算式的意思。

  方法一、22+13=35(人)35-6=29(人)

  (原来的人数+又来的人数=总人数 总人数—走了的人数=现在看戏的人数)

  方法二、22-6=16(人)16+13=29(人)

  (原来的人数—走了的人数=还剩下的人数 还剩下的人数+又来的人数=现在看戏的人数)

  方法三、13-6=7 (人) 7+22=29 (人)

  (又来的人数—走了的人数=多来的人数 多来的人数+原来的人数=现在看戏的人数)

  5、比较以上方法的异同。明确这三种方法的结果都是求现在看戏的有多少人,只是在解决问题的思路上略有不同。让学生体会对于一个实际的'问题可以有多种不同的解答方法。

  6、你能把每种计算方法的两个小算式写成一个算式吗?学生尝试列综合算式。

  板书:(1)22+13-6 (2)22-6+13 (3)13-6+22

  再次交流:你是怎么想的?

  (1)学生尝试自己说。

  (2)小组内互相说。

  (3)全班交流说,老师适时纠正说的过程中出现的问题。引导学生如何去掉中间量,把分步计算变成综合算式。

  三、指导学生脱式计算。

  22+13-6 22-6+13 13-6+22

  =35-6 (先算加) =16+13 (先算减) =7+22 (先算减)

  =29 (再算减) =29 (再算加) =29 (再算加)

  比较计算的方法,你发现了什么?

  (在一个算式里,只有加减法,按照从左往右的顺序,依次计算)

  四、练习巩固,应用实践

  1、给得数相等的两个算式连线.

  分析:须一算、二想、三连.即先将每个算式的得数算出来,再根据得数想哪两个算式可以连线;然后再动笔.

  2、p6第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。

  3、p7第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。

  五、课堂总结

  你能用我们今天学会的数学知识解决我们身边的实际问题吗?

8、《解决问题的策略1》教学设计一等奖

  教学目标

  1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。

  2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

  教学准备:

  教师:多媒体课件;飞镖2支;镖盘一只。

  学生:小棒;表格。

  教学过程:

  一、谈话导入:

  同学们,今天是老师第一次到宝应来,老师乘车来的时候发现:宝应的2路公交车是每隔15分钟发一班,请大家想一想:如果从早上6点开始发车,到早上7点,一共发了几班车?

  小结、揭题:

  像这样,把每次发车的时刻一个一个的列出来,这就是解决问题的一种策略。今天,我们就研究“解决问题的策略” 板书课题:“解决问题的策略”

  二、探究策略:

  (一)、教学例1

  1、解决:“可以怎样围?”

  (1)王大叔在围羊圈的时候遇到了一个数学问题,同学们,你们愿意帮帮他吗?(课件出示: 王大叔用18根1米长的栅栏围成一个长方形羊圈)这个长方形的羊圈可以怎样围呢?

  (2)能用小棒摆出来吗?1根小棒代表1米,请大家动手试一试。

  (3)交流:谁来说说,你是怎样围的?

  (4)教师问:有跟他不一样的围法吗?

  2、解决:“有多少不同的围法?”

  同学们说的都不错,那王大叔的羊圈一共有多少种不同的围法呢?能写出来吗?(课件出示表格)

  3、展示学生表格

  (1)展示重复的'8种的表格,问:长8宽1,谁来说说:你是怎样想的?你们同意他的答案吗?说说你们的理由。

  (2)再展示有顺序的4种,说:看看这张表格对吗?

  (3)展示没有顺序的表格并比较:

  这张表格呢? 两张表格你们认为哪一张更好一些?为什么?

  教师评价:对,按顺序填表才会显得有条理。

  (4)展示有重复和遗漏的表格:

  老师这里有张表格,大家看看,有什么意见?

  (5)小结:

  切换到电脑:教师小结同时课件演示:刚才我们在填表的时候,把不同的围法一个一个排列出来,从而解决了问题,运用的就是“一一列举” 的策略(板书:“一一列举”)

  (6)集体订正

  现在请同桌互相看看,写对的请举手,针对写错的学生,让错误的学生订正,没按顺序写的请你按顺序写一写。、

  同学们,刚才我们在填表的时候发现有的同学重复了,可能有的同学遗漏了,想一想,在一一列举的时候怎样才能做到不重复、不遗漏呢?

  (7)观察面积和长、宽的关系,发现规律。

  在大家的帮助下,王大叔知道羊圈有4种不同的围法,现在他想围一个面积最大的长方形,你们能帮他算出每个长方形的面积吗?第一个长方形的面积是?第2个呢?第3个?……

  你们认为王大叔会选哪一种?

  比较长方形的长、宽、和面积,你们发现了什么?

  看看长和宽的和,你们有什么发现?

  小结:看来有顺序的一一列举,还能帮助我们发现隐藏的数学规律。

  (二)、教学例二

  (1)王大叔的羊圈围好了,现在呀他要去买羊。当他赶到羊市场的时候,发现坏了,市场里只剩下最后3只羊,而且颜色各不一样。(课件出示图片)1只是黑色、1只是白色、1只是灰色,(课件出示:最少买1只羊,最多买3只羊)如果王大叔最少买1只羊,最多买3只羊学生回答。(课件出示:一共有多少种不同的买羊方案?)一共有多少种不同的买羊方案?

  (2)最少买1只羊,最多买3只羊,知道这句话什么意思吗?

  (3)你准备用什么策略解决这个问题?列举时你打算先考虑买几只羊的情况?

  教师引导:买1只羊可以怎样买呢?买2只羊可以怎样买呢?买3只羊呢?能把所有的不同方案都写出来吗?

  (4)展示学生作业,教师给予评价。

  过渡:刚才同学们一一列举的过程还可以用表格来表示:(出示表格)教师演示并讲解。

  (5)小结:通过列表格我们能很快看出是否有重复、有遗漏,这是一种科学有效的整理方法。

  三、练习拓展

  刚才同学们表现很出色,现在让我们轻松一下,做个游戏,好不好?

  (1)出示飞镖问:这是什么?有没有玩过?今天我们就玩投飞镖的游戏。(出示镖靶)问:10什么意思?投中红色部分就是10环。投中蓝色部分呢?黄色部分呢?你们想投吗?谁先来?

  出示:游戏的规则是投中2次。(教师板书)

  第一次投中,问:有没有投中?多少环?同学们猜一猜:第2次可能投中几环?我们看看,他究竟投中几环。(再投)

  看看,一共得了多少环?

  还有谁想投?

  (2)现在,如果再请一位同学投,投中2次,可能会得多少环?能把所有的答案列举出来吗?请同学们用加法算式在纸上写出来。

  展示学生作业问:你是按什么顺序列举的?

  (3)教师:现在如果游戏规则是:只投两次(板书)

  先说说,和投中2次有什么区别?投不中就是多少环?只投两次,除了刚才出现的情况以外,还有可能得到多少环?

  (4)老师发现,我们宝应实小五( 1 )班的同学今天的表现真不错,大家知道宝应是个好地方,有很多特产,你们能向大家介绍介绍吗?

  老师觉得这4种不错(课件出示:藕粉 荷叶茶 莲藕汁 大闸蟹)看看,是什么?

  如果今天来的客人老师请你推荐其中的一种或两种,有多少种不同的推荐方法?

  交流:同学们,谁来说说,你是怎么推荐的?

  我相信我们会场上的客人老师一定会根据同学们的推荐,去选择自己满意的特产。

  四、小结:

  同学们,通过今天的学习,你有什么收获?在用列举的策略解决问题时你觉得要注意些什么?

  五、作业:

  练习十一1-3

相关文章

推荐文章