《解决问题的策略1》教学设计一等奖
1、《解决问题的策略1》教学设计一等奖
教学目标
1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。
2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。
教学准备:
教师:多媒体课件;飞镖2支;镖盘一只。
学生:小棒;表格。
教学过程:
一、谈话导入:
同学们,今天是老师第一次到宝应来,老师乘车来的时候发现:宝应的2路公交车是每隔15分钟发一班,请大家想一想:如果从早上6点开始发车,到早上7点,一共发了几班车?
小结、揭题:
像这样,把每次发车的时刻一个一个的列出来,这就是解决问题的一种策略。今天,我们就研究“解决问题的策略” 板书课题:“解决问题的策略”
二、探究策略:
(一)、教学例1
1、解决:“可以怎样围?”
(1)王大叔在围羊圈的时候遇到了一个数学问题,同学们,你们愿意帮帮他吗?(课件出示: 王大叔用18根1米长的栅栏围成一个长方形羊圈)这个长方形的羊圈可以怎样围呢?
(2)能用小棒摆出来吗?1根小棒代表1米,请大家动手试一试。
(3)交流:谁来说说,你是怎样围的?
(4)教师问:有跟他不一样的围法吗?
2、解决:“有多少不同的围法?”
同学们说的都不错,那王大叔的羊圈一共有多少种不同的围法呢?能写出来吗?(课件出示表格)
3、展示学生表格
(1)展示重复的'8种的表格,问:长8宽1,谁来说说:你是怎样想的?你们同意他的答案吗?说说你们的理由。
(2)再展示有顺序的4种,说:看看这张表格对吗?
(3)展示没有顺序的表格并比较:
这张表格呢? 两张表格你们认为哪一张更好一些?为什么?
教师评价:对,按顺序填表才会显得有条理。
(4)展示有重复和遗漏的表格:
老师这里有张表格,大家看看,有什么意见?
(5)小结:
切换到电脑:教师小结同时课件演示:刚才我们在填表的时候,把不同的围法一个一个排列出来,从而解决了问题,运用的就是“一一列举” 的策略(板书:“一一列举”)
(6)集体订正
现在请同桌互相看看,写对的请举手,针对写错的学生,让错误的学生订正,没按顺序写的请你按顺序写一写。、
同学们,刚才我们在填表的时候发现有的同学重复了,可能有的同学遗漏了,想一想,在一一列举的时候怎样才能做到不重复、不遗漏呢?
(7)观察面积和长、宽的关系,发现规律。
在大家的帮助下,王大叔知道羊圈有4种不同的围法,现在他想围一个面积最大的长方形,你们能帮他算出每个长方形的面积吗?第一个长方形的面积是?第2个呢?第3个?……
你们认为王大叔会选哪一种?
比较长方形的长、宽、和面积,你们发现了什么?
看看长和宽的和,你们有什么发现?
小结:看来有顺序的一一列举,还能帮助我们发现隐藏的数学规律。
(二)、教学例二
(1)王大叔的羊圈围好了,现在呀他要去买羊。当他赶到羊市场的时候,发现坏了,市场里只剩下最后3只羊,而且颜色各不一样。(课件出示图片)1只是黑色、1只是白色、1只是灰色,(课件出示:最少买1只羊,最多买3只羊)如果王大叔最少买1只羊,最多买3只羊学生回答。(课件出示:一共有多少种不同的买羊方案?)一共有多少种不同的买羊方案?
(2)最少买1只羊,最多买3只羊,知道这句话什么意思吗?
(3)你准备用什么策略解决这个问题?列举时你打算先考虑买几只羊的情况?
教师引导:买1只羊可以怎样买呢?买2只羊可以怎样买呢?买3只羊呢?能把所有的不同方案都写出来吗?
(4)展示学生作业,教师给予评价。
过渡:刚才同学们一一列举的过程还可以用表格来表示:(出示表格)教师演示并讲解。
(5)小结:通过列表格我们能很快看出是否有重复、有遗漏,这是一种科学有效的整理方法。
三、练习拓展
刚才同学们表现很出色,现在让我们轻松一下,做个游戏,好不好?
(1)出示飞镖问:这是什么?有没有玩过?今天我们就玩投飞镖的游戏。(出示镖靶)问:10什么意思?投中红色部分就是10环。投中蓝色部分呢?黄色部分呢?你们想投吗?谁先来?
出示:游戏的规则是投中2次。(教师板书)
第一次投中,问:有没有投中?多少环?同学们猜一猜:第2次可能投中几环?我们看看,他究竟投中几环。(再投)
看看,一共得了多少环?
还有谁想投?
(2)现在,如果再请一位同学投,投中2次,可能会得多少环?能把所有的答案列举出来吗?请同学们用加法算式在纸上写出来。
展示学生作业问:你是按什么顺序列举的?
(3)教师:现在如果游戏规则是:只投两次(板书)
先说说,和投中2次有什么区别?投不中就是多少环?只投两次,除了刚才出现的情况以外,还有可能得到多少环?
(4)老师发现,我们宝应实小五( 1 )班的同学今天的表现真不错,大家知道宝应是个好地方,有很多特产,你们能向大家介绍介绍吗?
老师觉得这4种不错(课件出示:藕粉 荷叶茶 莲藕汁 大闸蟹)看看,是什么?
如果今天来的客人老师请你推荐其中的一种或两种,有多少种不同的推荐方法?
交流:同学们,谁来说说,你是怎么推荐的?
我相信我们会场上的客人老师一定会根据同学们的推荐,去选择自己满意的特产。
四、小结:
同学们,通过今天的学习,你有什么收获?在用列举的策略解决问题时你觉得要注意些什么?
五、作业:
练习十一1-3
2、《解决问题的策略1》教学设计一等奖
教学内容:苏教版五年级(上册)第63-64页例1、例2
教学目标:1、使学生经历用“一一列举”的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。2、沟通“一一列举”和“列表”两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。
教学过程:
一、课堂导入
同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!
二、教学例1
1、导语:我们来看看第一个问题。
出示:园艺工人用6根1米长的'栅栏围成一个长方形花圃,他是怎样围的?
(1) 师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?
(2)学生汇报 板书:长(m)2
宽(m)1
师:说说你是怎样想的?和他想得一样的同学请举手。
小结:看来这个花圃只有一种围法。
2、导语:我们再来看看另一个花圃:
出示:园艺工人准备用10根1米长的栅栏,围成一个大一些的长方形花圃,有几种不同的围法?
(1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。
(2)学生汇报 板书:长(m)4 3
宽(m)1 2
师:你有几种围法?你呢?
师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)
小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),“一一列举”这就是我们今天要学习的新策略。
3、导语:下面请同学们用这个策略来解决一个问题。
出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?
(1)请你思考之后,把不同的围法一一列举到第一张表格上。
(2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)
师:这位同学列举了三种围法,他找全了吗?你有几种围法?那他缺哪一种? (教师在三种围法的表格中,填写第四种围法)现在全了吗?这张表格中剩下的空格还要不要填了?
3、《解决问题的策略1》教学设计一等奖
[教学内容]
运用加法和减法两步计算解决问题 (p4 例1)
[教学目标]
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法。
2、学会运用加法和减法两步计算解决实际问题。
3、在解决问题的过程中,让学生感受可以用不同的方法解决问题。
4、初步培养学生发现问题、提出问题、解决问题的能力。
[教学重点]
学会运用加法和减法两步计算解决实际问题。
[教学难点]
培养学生在实际生活中多角度观察问题、发现问题、提出问题、解决问题的能力。
[教学过程]
一、情景导入,激发兴趣
观察主题图问:图上有谁,他们在干什么,还有想去做什么的,数一数分别有多少人?这幅主题图将告诉我们什么数学知识呢?我们具体来看。
二、合作交流,探索新知
1、引导学生观察木偶戏的情景图。
(1)说一说,图上给我们提供了那些信息?(文字信息:原来有22人在看戏,又来了13人,图中信息:走了6人)
(2)要解决什么问题?(有多少人在看木偶戏)
2、小组交流讨论,提出解决问题的方案。
3、选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上,试着用文字说说每道算式的意思。
方法一、22+13=35(人)35-6=29(人)
(原来的人数+又来的人数=总人数 总人数—走了的人数=现在看戏的人数)
方法二、22-6=16(人)16+13=29(人)
(原来的人数—走了的人数=还剩下的人数 还剩下的人数+又来的人数=现在看戏的人数)
方法三、13-6=7 (人) 7+22=29 (人)
(又来的人数—走了的人数=多来的人数 多来的人数+原来的人数=现在看戏的人数)
5、比较以上方法的异同。明确这三种方法的结果都是求现在看戏的有多少人,只是在解决问题的思路上略有不同。让学生体会对于一个实际的'问题可以有多种不同的解答方法。
6、你能把每种计算方法的两个小算式写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6 (2)22-6+13 (3)13-6+22
再次交流:你是怎么想的?
(1)学生尝试自己说。
(2)小组内互相说。
(3)全班交流说,老师适时纠正说的过程中出现的问题。引导学生如何去掉中间量,把分步计算变成综合算式。
三、指导学生脱式计算。
22+13-6 22-6+13 13-6+22
=35-6 (先算加) =16+13 (先算减) =7+22 (先算减)
=29 (再算减) =29 (再算加) =29 (再算加)
比较计算的方法,你发现了什么?
(在一个算式里,只有加减法,按照从左往右的顺序,依次计算)
四、练习巩固,应用实践
1、给得数相等的两个算式连线.
分析:须一算、二想、三连.即先将每个算式的得数算出来,再根据得数想哪两个算式可以连线;然后再动笔.
2、p6第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
3、p7第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
五、课堂总结
你能用我们今天学会的数学知识解决我们身边的实际问题吗?
4、《解决问题的策略1》教学设计一等奖
一、教学目标分析
一一列举是把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而找到问题的答案。本课的教学目标为:进一步加深对现实问题中基本数量关系的理解,增强分析问题的有序性;进一步体会解决问题策略的多样化,增强灵活选用策略的能力。在落实教学目标方面要避免以下问题。
不重视一一列举的有序性。某些教师认为苏教版教材在教学一一列举策略之前,每个学期都或多或少地渗透了这个策略,只是没有提炼出策略名称而已。特别是四年级下册学习搭配的规律时,学生已经会不重复、不遗漏地进行搭配,因此本课无须强调有序。苏教版关于“解决问题的策略”的编排特点是,先将要学习的策略渗透到各部分内容之中,然后从四年级上册开始安排“解决问题的策略”单元,集中教学解决问题的策略,促进学生掌握一些基本的策略,提高学生解决问题的能力。这就要求教师在教学时正确处理好策略的分散教学和集中教学的关系,唤醒学生已有的一一列举经验,引导学生探究一一列举策略的内涵,学会有序思考。
呆板、僵化地理解一一列举策略。教材中的一一列举策略主要是借助表格呈现的,因此部分教师错误地认为一一列举策略就是用表格呈现所有可能的策略。事实上,列表策略强调的是用表格呈现信息,一一列举策略强调的是列出所有的可能情况。用表格列出所有可能的情况只是一一列举策略的一种具体表现形式,这种形式能较清晰地列出所有的可能,但并不是唯一的形式。教师可引导学生在掌握用列表法进行一一列举的基础上思考不用表格如何做到一一列举。
孤立地学习某种策略。苏教版教材从四年级上册开始组织学生集中学习列表、画图、一一列举、倒推、假设、替换、转化等策略。教学时,教师不能孤立地教学其中的某种策略,而应了解编者的意图,有机地将前后策略联系起来,提高策略教学的有效性。
二、教学过程
(一)感受情境,唤醒记忆
1.以“宝贝向前冲”为情境,引出3道不同年级的数学题。
(1)把7个苹果分成2堆,有哪几种分法?
(2)有3个木偶娃娃和2顶帽子,最多有多少种不同的搭配方法?
(3)用小数点和2、3、4最多可以组成几个不同的两位小数?
2.引导学生找这3道题的解法的共同特点,并想一想在解题时要注意什么。(要注意有序性,做到不重复、不遗漏。)
3.揭题。
【用学生已会解决的`不同层次的3个实际问题为教学引子,唤醒学生关于有序的经验,并在反思解题的共同特点和注意点时,让学生感知本课教学的重点——有序思考。这样的设计旨在梳理分散在各个年级的与一一列举有关的内容。】
(二)整理信息,感悟策略
例l:王大叔用18根l米长的栅栏围一个长方形羊圈,有多少种不同的围法?
1.整理信息。提问:从题目中能获得哪些数学信息?
2.出示表格。小组先动手围一围,再将不同的围法填入表格(表格主要包含长、宽、周长、面积等项目)。
3.汇报结果。交流所填表格,并思考为什么会出现重复和遗漏的现象。
4.整理表格。让学生结合具体的无序的表格谈谈怎样使之有序。
5.探寻规律。引导学生结合有序排列的表格,探寻表格中隐含的数学规律,得出:①周长不变。不管怎样 围,周长都是18米。②长、宽和面积都在变。长由8米变到5米,宽由1米变到4米,相应的面积由8平方米变到20平方米。③长与宽的差越小,长方形的面积就越大。④从充分利用资源的角度考虑,应选择面积最大的围法。
6.回顾反思。引导学生回顾帮王大叔解决围羊圈问题的过程,思考有哪些收获、有哪些要注意的事项。教师归纳;用一一列举的策略能列出解决问题的所有可能策略;有序思考不仅能保证列举时不重复、不遗漏,还有助于发现规律。
【本环节旨在促进学生用表格进行一一列举,并借助表格理解基本的数量关系、发现数量的变化趋势。教学时要突显有序思考,可分四个层次展开:第一层,整理信息。为了防止学生囫囵吞枣地理解题意,可先让学生读题后说一说自己的理解,再相互交流,认识基本的数量关系。第二层,无序列举。可故意将表格多设计几行,设置陷阱,“诱使”学生出现重复或遗漏的情况,还可在学生汇报时有意展示有重复、遗漏现象的表格,让学生意识到无序会导致遗漏或重复,引发学生的思考。第三层,有序列举。引导学生思考怎样才能做到不重复、不遗漏,让学生认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性。第四层,反思提升。在回顾解决;问题的过程中, 反思、感受一一列举的特点和价值。】
例2:订阅下面的杂志(图中杂志为《科学世界》、《数学乐园》、《七彩文学》,图略),最少订阅1种,最多订阅3种,有多少种不同的订阅方法?
1.学生独立整理信息,理解“最少订阅1种,最多订阅3种”的意思。
2.引导学生按独立思考——同桌交流——全班交流的步骤列出所有可能的订阅情况,重点交流订阅2种的可能情况,突出有序思考。
3.引导学生思考“如果不列表,还可以怎样列举所有可能的订阅情况”,并尝试用字母、数字、符号或其他形式表示这3种杂志,列出所有可能的订阅情况。
4.引导学生比较哪种方法简便,并说说理由。
【本环节旨在让学生进一步体会解决问题策略的多样性,增强灵活选用策略的能力。让学生探索不列表时怎样列举所有可能的订阅情况,能促使学生多视角、多形式地解决问题,有效预防学生把解决具体问题作为学习目标,或片面地将一一列举策略理解为通过表格列举的策略,提高他们灵活选用策略的能力。】
(三)解决问题,巩固策略
1.独立完成教材第64页“练一练”:“一张靶纸共3圈,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中2次,可能得到多少环?”
2.独立思考:把“小华投中2次”改为“小华投了2次”,结果怎样?
3.说说生活中哪些地方用到了一一列举策略,具体是如何应用的。
【本环节旨在让学生独立应用一一列举策略解决实际问题,进一步内化一一列举策略。】
5、《解决问题的策略1》教学设计一等奖
教学目标:
1、让学生自主经历探索解决问题的策略和方法。
2、培养学生的思维能力,训练学生有合理地分析问题,提高学生解决问题的能力。
3、明确小括号的作用。
教学过程:
活动一:出示情景图,提出问题
师:你可以提出什么数学问题?
生互相交流。
师抽生交流并板演:犁糕一共可以装多少包?
活动二:解决问题
师:你会解决这个问题吗?
[生尝试解决,并交流]
师:谁愿意起来交流一下你的做法?
全班交流,展示不同的.写法。
生1:520÷4=130(包)
320÷4=80(包)
138+80=210(包)
生2:(520+320)÷4=
师:你能说一说每一步计算的含义吗?
师:你能总结出有括号的先加再除的混合的运算顺序吗?
生答。
师:请同学们解决下面的问题。
360÷(2X3)380÷(132-127)
活动三:练一练
第4、5、10题:要放手让学生独立地完成。交流时注重让学生说清分析思路和策略,以此提高学生解决问题的能力。
6、《解决问题的策略》的教学反思
小明和小芳同时从家里出发走向学校(如图,)经过4分后两人在校门口相遇。他们两家相距多少米。
这道例题并不能体现出画图这一策略在行程问题中的价值,因为许多学生根据以前的经验就可以轻松解决。在选择解决问题的策略时,几乎所有的学生都是采用列表这一策略的。有许多学生告诉我,列表这一策略其实根本也用不上,因为他们很容易就抓住了题目中的数量关系。所以,在讲解这道例题时,我把着力点放在了指导学生画图上。指导学生抓住画图的.三要素:方向,条件,问题。数量关系倒是很简单的两三句话带过了。
学生对画线段图来表述行程问题这一方法不感兴趣,我认为是有原因的。第一,不习惯,虽然以前也接触过线段图,要画好线段图也是很不容易的,所以,学生更愿意选择列表这一策略。第二:往往会画线段图的也能够分析清题目的数量关系,甚至说,不画线段图也能分清。而不会做的也不会画,所以,他们觉得线段图是没有必要的。对于学生的这一问题,我们只有在平时的教学中多强调线段图的简洁,方便性,同时,只要学生的线段图上能够反映出三要素,也就应该加以鼓励。如若不然,恐怕学生会更加不喜欢线段图了。
还有,班级中大括号的画法实在是难看之极。我们同轨的老师交流了一下,总结出一个方法:先画两根直线,然后加个小帽子(中间的尖),再把两头弯一下。让学生画了几个,果然本子上的大括号漂亮多了。
7、《解决问题的策略》的教学反思
在上课前,我让学生观看了《曹冲称象》的flash动画片,设想让学生体会到在生活中用策略解决问题的魅力所在,以此来激发学生学习的积极性,学生看完后,都认为曹冲非常聪明,也有一种非常想运用自己所学的本领,来解决一些实际问题的冲动。课前观看,学生非常惊奇,效果较好。
教学例题时,我创设购物情境,引导学生观察,运用自己学过的知识进行整理条件和问题,学生找到了题中的条件和问题,很快就会算出小华买5本需要多少钱?我追问:你平时用哪些方法进行整理信息并解答问题的?学生不作声,给我的感觉是他们不用什么方法,只要懂得其中的数量关系,就能解题。
对于班级中聪明的孩子来说,有些题目老师不讲,他们都会做。为了照顾到全体同学,更好地帮助学生理清题目中的数量关系,我向同学们介绍了一种用列表来整理条件和问题。引导学生表述题中的条件和问题,并呈现简洁的文字摘录,学生感觉很清晰,很简便,学习兴趣逐渐加浓。我指出如果再给它们加上边线会怎样呢?操作后形成了表格,学生十分兴奋,并认为这样题目中的数量关系就更清晰了。此时,学生对列表整理的优势有了直观的感知,再通过分析表格中信息之间的数量关系,使全体学生都掌握了解题的.方法。
在此基础上,如果能安排几次对比,比如将列表整理与凌乱的情境图进行对比;将列表整理与学生的文字记录整理进行了对比,那就更好了。尤其是要将列表整理与文字记录整理进行对比,让学生明确“列表整理”清楚、简便、有条理,形成自愿运用“列表整理”解决问题的积极情感。在这方面我做的不够细致,只注重分析了表中的数量关系,如从条件出发,要求5本笔记本多少钱,先要求出1本的价钱,再求出5本的价钱;再如从问题出发,要求5本的价钱,必须先求出1本的价钱……看似教学效果不错,学生解答得非常正确,但是感觉此节课还应该突出如何进行列表整理……让学生真正掌握这一方法,以帮助学生解决今后出现的更复杂的题目。
在教学中,给我的感觉是单独出现条件和问题,要学生自主列表解决,问题不大,但如果几个条件和问题同时出现,有些学生就会茫然……这在教学两表合并成一张表时,感觉特别明显。
8、四年级数学《解决问题的策略》的教学反思
“解决问题的策略”是苏教版教材数学四年级上册的教学内容。
通过对本课的教学,我自认为有成功之处,也不很多不足,我先说说成功之处有:
首先本节课能够以学生熟悉且感兴趣的动画片《田忌赛马》引入新课,让学生感受到什么是策略,选择合适的策略在解决问题的过程中是有效的,必要的。其次,在教学中,我注意发挥自己的引导作用,在学生初步设想 整理信息方法的基础上,指导学生将题目中的信息对应地填写在表格里。再次,在解决问题时,注意引导学生可以从问题出发想必条件,也可从条件出发想问题,让学生促进会两种不同的思考方法,进一步体会表格是合理 ,必要的,从而形成对这一解题策略的体验。
不足之处:
1、整堂课看起来每个环节设计的细腻深入,但细想,整堂课重点是让学生掌握列表整理信息的方法,我在处理时有失妥当,当引导用表格整理时,信息怎么处理,怎么整理,怎么书写,这样书写有什么好处,这一连队串的问题,也是让学生体会表格整理信息的`优越性之所在,在这没有做很好的讲解。
2、板书不太理想。板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多 本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。
3、本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有。
通过以上的反思,我将在以后的教学中对自己存在的优点我会继续保持,针对不足我将会不断地改进,使自己的课堂教学逐步走上一个新的台阶。