说课稿

《完全平方公式》的一等奖说课稿

2023-08-25 15:02:35

  《完全平方公式》的一等奖说课稿

《完全平方公式》的一等奖说课稿

1、《完全平方公式》的一等奖说课稿

  作为一位优秀的人民教师,通常需要用到说课稿来辅助教学,说课稿可以帮助我们提高教学效果。说课稿应该怎么写呢?以下是小编为大家整理的《完全平方公式》的说课稿,仅供参考,大家一起来看看吧。

  一)、教材分析

  说课内容:

  《整式的乘除与因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

  本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

  教学目标和要求:

  由课标要求以及学生的情况我将三维目标定义为以下三点:

  知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

  过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

  情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

  教学的重点与难点:

  根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的'理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

  二)、教法与学法

  (1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

  (2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  (3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

  三)、教学过程

  一、创设情景,推导公式

  计算

  1、想一想(电脑演示)

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。

  ⑴、分别写出每块实验田的面积;

  ⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

  2、算一算

  ①、你能用多项式乘法法则说明理由吗?(引导学生说理)

  3、做一做

  你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

  二、自主探究,合作交流

  板书公式:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗?

2、《完全平方公式》的一等奖说课稿

  一、教材分析

  说课内容:

  《整式的乘除与因式分解》的《完全平方公式》。

  教材的地位和作用:

  完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

  本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的逻辑推理能力和建模思想。

  教学目标和要求:

  由课标要求以及学生的情况我将三维目标定义为以下三点:

  知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

  过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

  情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

  教学的重点与难点:

  根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

  二、教法与学法

  (1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

  (2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

  (3)由易到难安排例题、练习,符合八年级学生的`认知结构特点。

  (4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

  三、教学过程

  教师活动学生活动设计意图

  一、创设情景,推导公式

  计算

  1、想一想(电脑演示)

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)

  ⑴、分别写出每块实验田的面积;

  ⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

  2、算一算

  ①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)

  3、做一做

  你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

  二、自主探究,合作交流

  板书公式:

  ①②1、问题:

  ①这两个公式有何相同点与不同点?

  ②你能用自己的语言叙述这两个公式吗

3、《完全平方公式》的一等奖说课稿

  今天我说课的题目是《完全平方公式》,所选用的教材为北师大版义务教育课程标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标,教学方法,教学过程四个方面加以说明。

  一、 教材分析

  1、教材的地位和作用

  本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

  2、学情分析

  从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  对公式(a+b) 2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

  难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

  二、 教学目标分析

  新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。借此,我将三维目标进行整合,确定本节课的教学目标为:

  1、 经历探索完全平方公式的过程,进一步发展符号感和推理能力。会推导完全平方公式,并能运用公式进行简单的运算。

  2、在探索讨论、归结总结中,培养学生语言表达能力、逻辑思维能力。

  3、 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生积极参与对数学问题的讨论并敢于表达自己的观点。

  三、 教学方法分析

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习旧知,温故知新

  设计意图:建构注意主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的`过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其内涵和外延(条件、结论、应用范围等) ,通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入下一 环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验等几个方面进行归纳,我设计了这么三个问题:

  ① 通过本节课的学习,你学会了哪些知识;

  ② 通过本节课的学习,你最大的体验是什么;

  ③ 通过本节课的学习,你掌握了哪些学习数学的方法?

  (7) 布置作业,提高升华

  以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

  以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

4、《完全平方公式》教学设计一等奖

  教学目标

  理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

  在运用完全平方公式的过程中,进一步发展学生的符号演算的能力,提高运算能力。

  培养学生在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的见解。

  重点难点

  重点

  完全平方公式的比较和运用

  难点

  完全平方公式的结构特点和灵活运用。

  教学过程

  一、复习导入

  1.说出完全平方公式的内容及作用。

  2.计算,除了直接用两数差的完全平方公式外,还有别的方法吗?

  学生思考后回答:由于两数差可以转化成两数和,所以还可以用两数和的完全平方公式计算,把“”看成加数,按照两数和的完全平方公式计算,结果是一样的。

  教师归纳:当我们对差与和加以区分时,两个公式是有区别的,区别是其结果的中间项一个是“减”一个是“加”,注意到区别有助于计算的准确;另一方面,当我们对差与和不加区分,全部理解成“加项”时,那么两个公式从结构上来看就是一致的了,其结构都是“两项和的平方,等于它们的平方和,加上它们的积的两倍。”注意到它们的统一性,有于我们更深刻地理解公式特点,提高运算的灵活性。

  我们学习运算,除了要重视结果,还要重视过程,平时注意训练运算方法的多样性,可以加深对算理的理解和运用,提高运算过程的合理性和灵活性,从而真正的提高运算能力。

  二、新课讲解

  温故知新

  与,与相等吗?为什么?

  学生讨论交流,鼓励学生从不同的角度进行说理,共同归纳总结出两条判断的思路:

  1.对原式进行运算,利用运算的结果来判断;

  2.不对原式进行运算,只做适当变形后利用整体的方法来判断。

  思考:与,与相等吗?为什么?

  利用整体的方法判断,把看成一个数,则是它的相反数,相反数的奇次方是相反的,所以它们不相等。

  总结归纳得到:;

  三、典例剖析

  例1运用完全平方公式计算:

  (1);(2)

  鼓励学生用多种方法计算,只要言之成理,只要是自己动脑筋发现的,都要给予肯定,同时还要引导学生评价哪种算法最简洁。

  例2计算:

  (1);(2).

  例3计算:

  (1);(2)

  训练学生熟练地、灵活地运用完全平方公式进行运算,进一步渗透整体和转化的思想方法。

  四、课堂练习

  1.运用完全平方公式计算:

  (1);(2);

  (3);(4)

  2.计算:

  (1);(2).

  3.计算:

  (1);(2)

  学生解答,教师巡视,注意学生的计算过程是否合理,组织学生对错误进行分析和点评。

  五、小结

  师生共同回顾完全平方公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

  六、布置作业

  P50第2(3)、(4),3题

5、《完全平方公式》教学设计一等奖

  教学目标

  在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.

  重点、难点

  根据公式的特征及问题的特征选择适当的公式计算.

  教学过程

  一、议一议

  1.边长为(a+b)的正方形面积是多少?

  2.边长分别为a、b拍的两个正方形面积和是多少?

  3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答

  (1)(a+b)

  (2)a +b

  (3)因为(a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.

  二、做一做

  例1. 利用完全平方式计算1. 102 , 2. 197

  师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的'平方,且计算尽可能简便.

  学生活动:在练习本上演示此题.让学生叙述,

  教师板书.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809

  例2.计算:1.(x-3) -x 2.(2a+b- )(2a-b+ )

  师生共同分析:1中(x-3) 可利用完全平方公式.

  学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9

  师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神.

  学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.

  教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.

  最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

  三、试一试计算:

  1.(a+b+c)

  2. (a+b)

  师生共同分析:

  对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)]

  对于(2)可化为(a+b) =(a+b)(a+b) .

  学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,

  教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

  四、随堂练习

  P38 1

  五、小结

  本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.

  1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) = a ±b 的错误,或(a±b) = a ±ab+b (漏掉2倍)等错误.

  2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.

  3.用加法结合律,可为使用公式创造了条件.利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方.

  六、作业

  课本习题1.14 P38 1、2、3.

  七、教后反思

6、《完全平方公式》教学设计一等奖

  一、教材分析:

  (一)教材的地位与作用

  本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

  (1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

  (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

  (3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

  (二)教学目标的确定

  在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

  1、知识目标:

  理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

  2、能力目标:

  渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

  3、情感目标:

  培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

  (三)教学重点与难点

  完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

  本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

  本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

  二、教学方法与手段

  (一)教学方法:

  针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

  采用小组讨论,大组竞赛等多种形式激发学习兴趣。

  (二)教学手段:

  利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

  (三)学法指导:

  在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

  三、教材处理

  根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

  四、教学程序

  一、创设情境,引出课题

  如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

  a

  若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

  a 10

  引导学生利用图形分割求面积。

  另一方面:正方形

  10 10a 102 面积为(a+10)2, 所以:

  (a+10)2=a2+20a+102

  a a2 10a

  a 10

  b ab b2 把10替换为b,

  (a+b)2=a2+2ab+b2

  a a2 ab 提出课题

  a b

  通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

  (根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

  问题是知识、能力的'生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。

  对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触。

  二、交流对话,探求新知

  1、推导两数和的完全平方公式

  计算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

  ①算式:两数和的平方

  ②积:两个数的平方和加上这两个数积的2倍

  3、语言叙述

  (a+b)2=a2+2ab+b2用语言如何叙述

  4、公式(a—b)2=a2—2ab+b2教学

  ①利用多项式乘法 (a—b)2=(a—b)(a—b)

  ②利用换元思想 (a—b)2=[a+(—b)]2

  ③利用图形

  b

  a

  (a—b) b

  a

  5、学生总结、归纳:

  (a+b)2=a2+2ab+b2

  (a—b)2=a2—2ab+b2

  这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

  6、公式中的字母含义的理解。(学生回答)

  (x+2y)2是哪两个数的和的平方?

  (x+2y)2=( )2+2( )( )+( )2

  (2x—5y)2是哪两个数的差的平方?

  (2x+5y)2=( )2+2( )( )+( )2

  变式 (2x—5y)2可以看成是哪两个数的和的平方?

  利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

  组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

  由学生对公式

  (a+b)2=a2+2ab+b2进行口头语言叙述。

  (1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。

  (2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;

  (3)体会辩证统一的唯物主义观点;

  (4)正确引导学生学习时知识的正迁移。

  使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”加深学生对公式中的字母含义的理解,明确字母意义的广泛性。

  三、整理新知形成结构

  1、完全平方公式并分析公式左右的特征。

  2、换元的基本想法

  四、应用新知,体验成功

  1、例1教学:用完全平方公式计算

  (1)(a+3)2

  (2)(y—)2

  (3)(—2x+t)2

  (4)(—3x—4y)2

  学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(—3x—4y)2可以看成是—3x与4y差的平方,也可以看成—3x与—4y和的平方。

  提出以下问题:

  (1)可否看成两数和的平方,运用两数和的平方公式来计算?

  (2)可否看成两数差的平方,运用两数差的平方公式来计算?

  (3)能不能进行符号转化?如(—3x—4y)2=(3x+4y)2

  2、公式巩固

  (1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

  (2)下列各式的计算,错在哪里?应怎样改正?

  ①(a+b)2=a2+b2 ②(a—b)2=a2—b2

  ③(a—2b)2=a2+2ab+2b2

  3、练习:运用完全平方公式计算:(学生板演)

  ①(a+5)2

  ②(3+x)2

  ③(y—2)2

  ④(7—y)2

  ⑤(2x+3y)2

  ⑥(—2x—3y)2

  ⑦(3— )2

  ⑧(— — )2

  4、例2,运用完全平方公式计算:

  (1)1012

  (2)982

  5、练习:运用完全平方公式计算

  (1)912

  (2)7982

  (3)(10 )2

  6、讨论:

  (1—2x)(—1—2x), (x—2y)(—2y+1)如何计算

  五、公式拓展,鼓励探究

  1、a2+b2=(a+b)2—______ a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a—b)2

  2、(a+b)2—(a—b)2=______

  3、(a+b+c)2=________

  4、提出思考题:(a+b)3=? (a+b)4=?

  5、已知 求 的值。

  6、已知 ,求x和y的值。

  (1)遵循及时巩固原则。

  (2)针对初一学生注意力不能持久的特点。

  (3)形成知识网络,有利于学生进一步学习公式的运用:

  (1)直接运用公式进行计算。

  (2)进一步帮助学生掌握换元法。

  (3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

  讲练结合:

  (1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。

  (2)体会公式实际运用作用,增加学习兴趣,进一步辨析完全平方公式与平方差公式的区别。

  提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

  六、小结提高,知识升华

  1、两个公式 (a+b)2=a2+2ab+b2

  (a—b)2=a2—2ab+b2

  2、两种推导方法:多项式乘法导出;图形面积导出

  3、换元法与转化

  七、作业布置,分层落实

  1、阅读教材 6.17内容

  2、见省编作业本 6.17

  3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

  由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

  (1)作业1主要以培养学习良好的学习习惯为目的。

  (2)结合学生实际情况,贯彻面向全体学生,因材施教原则。

  作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。

7、《完全平方公式》教学设计一等奖

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的`公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

8、《完全平方公式》教学设计一等奖

  学习目标:

  1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

  2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

  3、数形结合的数学思想和方法。

  学习重点:

  会推导完全平方公式,并能运用公式进行简单的计算。

  学习难点:

  掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。

  学习过程:

  一、学习准备

  1、利用多项式乘以多项式计算:(a+b)2 (a—b)2

  2、这两个特殊形式的多项式乘法结果称为完全平方公式。

  尝试用自己的语言叙述完全平方公式:

  3、完全平方公式的几何意义:阅读课本64页,完成填空。

  4、完全平方公式的结构特征:

  (a+b)2=a2+2ab+b2

  (a—b)2=a2—2ab+b2

  左边是 形式,右边有三项,其中两项是 形式,另一项是()

  注意:公式中字母的含义广泛,可以是 ,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△2

  5、两个完全平方公式的转化:(a—b)2= 2=( )2+2( )+( )2=( )

  二、合作探究

  1、利用乘法公式计算:

  (3a+2b)2 (2) (—4x2—1)2

  分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b

  2、利用乘法公式计算:

  992 (2) ( )2

  分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化( )2,( )2可以转化为( )2。

  3、利用完全平方公式计算:

  (a+b+c)2 (2) (a—b)3

  三、学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?

  四、自我测试

  1、下列计算是否正确,若不正确,请订正;

  (1) (—1+3a)2=9a2—6a+1

  (2) (3x2— )2=9x4—

  (3) (xy+4)2=x2y2+16

  (4) (a2b—2)2=a2b2—2a2b+4

  2、利用乘法公式计算:

  (1) (3x+1)2

  (2) (a—3b)2

  (3) (—2x+ )2

  (4) (—3m—4n)2

  3、利用乘法公式计算:

  9992

  4、先化简,再求值;

  ( m—3n)2—( m+3n)2+2,其中m=2,n=3

  五、思维拓展

  1、如果x2—kx+81是一个完全平方公式,则k的值是( )

  2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是( )

  3、已知(x+y)2=9, (x—y)2=5 ,求xy的值

  4、x+y=4 ,x—y=10 ,那么xy=( )

  5、已知x— =4,则x2+ =( )

相关文章

推荐文章