说课稿

《公倍数和最小公倍数》的一等奖说课稿

2023-08-25 15:02:32

  《公倍数和最小公倍数》的一等奖说课稿

《公倍数和最小公倍数》的一等奖说课稿

1、《公倍数和最小公倍数》的一等奖说课稿

  作为一名辛苦耕耘的教育工作者,常常需要准备说课稿,借助说课稿可以有效提高教学效率。说课稿应该怎么写呢?以下是小编帮大家整理的《公倍数和最小公倍数》的说课稿范文,欢迎大家分享。

  一、说教材

  1、教材分析

  最小公倍数这部分内容是在学生掌握了倍数概念的基础上进行教学的,主要是为学习通分做准备。按照《标准》的要求,教材中只出现求两个数的最小公倍数。

  2、教学目标

  结合教材所处的地位和学生实际,我制定了以下教学目标:

  知识与能力:

  让学生理解公倍数和最小公倍数的意义,用列举法和短除法会正确找出两个数的公倍数和最小公倍数。

  过程与方法:

  培养观察、操作、表达、思维能力与探索意识,发挥学生的想像力、创造力,能根据两个数的不同关系灵活地求两个数的最小公倍数。渗透集合思想,体验解决问题策略的多样化。

  情感态度价值观:

  让孩子在生活经验中体会成功的快乐,体会数学与人类的密切联系,感受数学与日常生活的关系。体验生活中处处有数学,处处用数学的理念。

  3、教学重、难点:

  新课标鼓励学生通过思考、讨论交流,经历探索的过程。据以上的目标,我确定了本课的教学重点是让学生理解公倍数和最小公倍数的意义,教学难点是选用恰当的方法求两个数的最小公倍数。

  二、说学法

  1、学情分析

  小学生的动手欲较强,学生认识数的`概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  2、学法指导

  通过动手,让学生用长方形纸片拼一拼、摆一摆,通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。

  三、说教法

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用温故知新引入新课,通过动手摆一摆纸片来探索新知。

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。

  学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。

  结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。

  四、教具准备:多媒体课件。

  学具准备:长3分米、宽2分米的长方形纸片若干个

  五、说教学设计:

  我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:

  (一)温故知新,引出新知

  教材创设了学生在裁纸中遇到的问题创设情境,是想通过求正方形的边长及其最小值,抽象出公倍数、最小公倍数的概念。学生尝试拼摆而且没有目的的去摆,且花费的时间也不少。怎样才能在一节课内完成概念及方法的教学呢?对,直奔主题。在复习完找倍数以后,我直接请学生观察这两个数的倍数中有什么相同点,从而引出公倍数。通过找其中最小的公倍数,顺利地引出最小公倍数。概念的教学由学生观察得出,学生很快就理解了。教师引导学生总结公倍数和最小公倍数的概念。

  (二)动手操作、合作探究

  强调:一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,所以用省略号来表示。

  让学生自己说说什么是公倍数和最小公倍数。

  出示12和18

  用自己的方法来找出最小公倍数。

  学生会用到列举法和几何图形的方法。对数比较小的可以用这些方法,那么1200和3400的找出公倍数和最小公倍数可以吗?

  教师及时引导学生有没有比较简便的方法呢?由于前面学习最大公因数的时候学过短除法,有的学生会想到,及时表扬学生。

  引出了短除法。让学生自学课本来解决这个问题。教师在适当的加以点拨。

  找生汇报解答的方法。

  师生共同总结找最小公倍数的方法。(把所有的除数和商连乘起来,就是这两个数的'最小公倍数。)

  (三)运用知识解决问题

  1、你发现了吗?

  出示一组数。如:5和74和96和128和24

  让学生求出最小公倍数

  仔细观察,每组数的最小公倍数与这组数之间的关系?你发现了什么?

  出示一点小窍门:

  当两数只有公因数1时,他们的最大公因数也是1。

  当两数成倍数关系时,较小的数就是他们的最大公因数。

  这样的练习设计,目的是让学生发现求最小公倍数中的特殊情况。

  2、火眼金睛:巩固今天这节课的概念性的知识点。

  (四)迁移运用,拓展探究

  写出下列各分数分子和分母的最小公倍数。

  7/21 8/28 16/40 6/15

  目的是为下一节课《通分》做好了知识的铺垫。

  (五)学以致用:

  有一袋糖果,无论8人来分,还是9人来分,都正好分完,这袋糖果至少有多少粒?

  (六)全课总结:

  通过今天的学习,你有什么收获?同桌互说,指名汇报。这样的总结,从知识的层面上做了一次回顾。并及时的总结了解学情,真正做到堂堂清。

  六、说板书设计

  我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。

  各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。

2、《公倍数和最小公倍数》的一等奖说课稿

  本节课需要完成的教学目标有:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  本课的教学重点是公倍数与最小公倍数的概念建立。教学难点是运用“公倍数与最小公倍数”解决生活实际问题。

  在教学公倍数的概念时,让学生经历操作、思考的过程,认识公倍数。如例1安排了用长3厘米、宽2厘米的长方形纸片分别铺边长是6厘米和8厘米的正方形的操作活动,通过学生的操作,引导学生观察正方形的边长与长方形的长、宽之间的关系,让学生看看正方形每条边各铺了几次?怎样用算式表示?,来说明为什么长3厘米,宽2厘米的长方形能铺满边长6厘米的正方形,不能铺满边长8厘米的正方形,接下来让学生思考这样的长方形纸片还能铺满边长是多少厘米的正方形?学生思考后,回答12厘米、18厘米、24厘米,从而引出公倍数的概念,再强调因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,用省略号表示,最后让学生说明8是2和3的公倍数吗?为什么?让学生在自主参与、发现、归纳的基础上认识并建立公倍数的概念的过程。

  学生在已经掌握公倍数的概念的基础上,让学生学习怎样找两个数的公倍数,学以致用。教学例2时,让学生独立思考,自主探索解决问题的方法,然后小组交流。通过具体的运用,巩固公倍数的概念。让学生说说怎样找6和9的公倍数,学生说了三种方法,一是先找9的倍数,从9的倍数中找6的倍数;二是分别找出6和9的倍数,再从中找出公有的倍数;三是先找6的倍数,再从中找出9的倍数,通过比较三种方法,让学生感受哪种方法比较简捷。在此基础上,揭示最小公倍数的含义,并介绍用集合圈的形式来表示6和9的倍数和公倍数,通过学生自主学习,弄清怎样用集合图来表示两个数的公倍数。帮助学生更加直观地理解概念,感受数学方法的严谨性。

  一、说教材

  (一)教材分析:

  1、教学内容:

  最小公倍数第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。

  2、结合学情与新课程标准对本环节的要求,分析教材编写意图:

  五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。

  在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。

  (二)对教材的处理意见

  1、教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。所以把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。原因有三:首先,学生的学习内容应该是现实的、有意义的、富有挑战性的;其次,有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;再者,课堂中最有效的时间是前15钟,做好这段时间的教学,有利于提高学习效率。从而把这一比较难理解的环节放在后面。

  2、新授课中补充生活实例,引导学生从意义的'理解来,解决实际问题,通过解决问题来理解意义。理由是:数学教学应密切联系学生的现实生活,使学生感到数学就在自己身边。

  3、课堂习题进行了有明确针对性与目的性的改变。(后述)

  (三)教学目标及教学重、难点

  1、教学目标

  (1)理解两个数的公倍数和最小公倍数的意义。

  (2)通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。

  (3)渗透集合思想,培养学生的抽象概括能力。

  2、教学重点

  公倍数与最小公倍数的概念建立。理由是:《标准》中要求4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数,因此,本节课的重点应放在学生对数的概念的认识上。

  3、教学难点

  运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。理由是:《标准》中指出人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能。但小学生的生活实际问题的解决能力普遍较低,所以要达到《标准》中的要求这无疑是重点中的难点。

  二、说学法

  1、学情分析

  小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  2、学法指导

  通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。

  三、说教法

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用情境引入新课,通过月历探索新知。

  学生在月历上找日期,清楚形象的看到两个数的倍数关系

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。

  学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。

  结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。

  四、教学具准备:印有月历纸、多媒体。

  五、具体的教学过程:

  我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:

  (一)、利用学具,导入新课(本环节为解决教学重点)

  1、 学生在预先发放的月历纸上按照老师的要求,在上面找出4和6的倍数的日期。

  2、引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,从而引出公倍数与最小公倍数。

  3、把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念。

  (二)、创设情境,应用知识:(本环节为解决教学难点)

  1、出示同学排队的题目。理由是:用富有生活问题的情境,激发学习兴趣,再次打通生活与数学的屏障。

  2、合作交流解决问题,方法提炼。

  (三)、练习巩固(讲清练习的层次)

  1、学会用最基本的方法求两个数的最小公倍数。

  2、用这样的知识解决生活中的问题。

  (1)找生日。基本——拓展

  (2)铺墙砖。用数学方法来解释生活现象,隐含着求公因数与求公倍数的联系。

  (四)、课堂小结

  学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

3、《公倍数和最小公倍数》的一等奖说课稿

  一、 说教材

  1、教材分析

  最小公倍数这部分内容是在学生掌握了倍数概念的基础上进行教学的,主要是为学习通分做准备。按照《标准》的要求,教材中只出现求两个数的最小公倍数。

  2、教学目标

  结合教材所处的地位和学生实际,我制定了以下教学目标:

  知识与能力:

  让学生理解公倍数和最小公倍数的意义,用列举法和短除法会正确找出两个数的公倍数和最小公倍数。

  过程与方法:

  培养观察、操作、表达、思维能力与探索意识,发挥学生的想像力、创造力,能根据两个数的不同关系灵活地求两个数的最小公倍数。渗透集合思想,体验解决问题策略的多样化。

  情感态度价值观:

  让孩子在生活经验中体会成功的快乐,体会数学与人类的密切联系,感受数学与日常生活的关系。体验生活中处处有数学,处处用数学的理念。

  3、教学重、难点:

  新课标鼓励学生通过思考、讨论交流,经历探索的过程。据以上的目标,我确定了本课的教学重点是让学生理解公倍数和最小公倍数的意义,教学难点是选用恰当的方法求两个数的最小公倍数.

  二、说学法

  1、学情分析

  小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  2、学法指导

  通过动手,让学生用长方形纸片拼一拼、摆一摆,通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。

  三、说教法

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用温故知新引入新课,通过动手摆一摆纸片来探索新知。

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。

  学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。

  结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。

  四、教具准备:多媒体课件。

  学具准备:长3分米、宽2分米的长方形纸片若干个

  五、说教学设计:

  我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:

  (一)温故知新,引出新知

  教材创设了学生在裁纸中遇到的问题创设情境,是想通过求正方形的边长及其最小值,抽象出公倍数、最小公倍数的概念。学生尝试拼摆而且没有目的的去摆,且花费的时间也不少。怎样才能在一节课内完成概念及方法的教学呢?对,直奔主题。在复习完找倍数以后,我直接请学生观察这两个数的倍数中有什么相同点,从而引出公倍数。通过找其中最小的公倍数,顺利地引出最小公倍数。概念的教学由学生观察得出,学生很快就理解了。教师引导学生总结公倍数和最小公倍数的概念。

  (二)动手操作、合作探究

  您现在正在阅读的小学数学《公倍数和最小公倍数》说课稿二文章内容由收集!本站将为您提供更多的精品教学资源!小学数学《公倍数和最小公倍数》说课稿二教师出示课件,

  强调:一个数的倍数的个数是无限的,所以两个数的公倍数的'个数也是无限的,所以用省略号来表示。

  让学生自己说说什么是公倍数和最小公倍数。

  出示12和18

  用自己的方法来找出最小公倍数。

  学生会用到列举法和几何图形的方法。对数比较小的可以用这些方法,那么1200和3400的找出公倍数和最小公倍数可以吗?

  教师及时引导学生有没有比较简便的方法呢?由于前面学习最大公因数的时候学过短除法,有的学生会想到,及时表扬学生。

  引出了短除法.让学生自学课本来解决这个问题.教师在适当的加以点拨。

  找生汇报解答的方法。

  师生共同总结找最小公倍数的方法。(把所有的除数和商连乘起来,就是这两个数的最小公倍数)

  (三)运用知识 解决问题

  1、你发现了吗?

  出示一组数.如:5和74和96和128和24

  让学生求出最小公倍数

  仔细观察,每组数的最小公倍数与这组数之间的关系?你发现了什么?

  出示一点小窍门:

  当两数只有公因数1时,他们的最大公因数也是1.

  当两数成倍数关系时,较小的数就是他们的最大公因数.

  这样的练习设计,目的是让学生发现求最小公倍数中的特殊情况。

  2.火眼金睛:巩固今天这节课的概念性的知识点.

  (四)迁移运用,拓展探究

  写出下列各分数分子和分母的最小公倍数。

  7/21 8/28 16/40 6/15

  目的是为下一节课《通分》做好了知识的铺垫。

  (五)学以致用:

  有一袋糖果,无论8人来分,还是9人来分,都正好分完,这袋糖果至少有多少粒?

  (六)全课总结:

  通过今天的学习,你有什么收获?同桌互说,指名汇报。这样的总结,从知识的层面上做了一次回顾。并及时的总结了解学情,真正做到堂堂清。

  六、说板书设计

  我本节课的板书设计力图全面而简明的将本课的内容传递给学生,便于学生理解和记忆。

  各位评委老师,我仅从教材、教法、学法、及教学过程、板书设计等几个方面对本课进行说明。这只是我预设的一种方案,但是课堂千变万化的生成效果,最终还要和学生、课堂相结合。

4、数学《公倍数和最小公倍数》教学设计一等奖

  教学内容:教科书第22-23页的例1、例2和练一练,练习四的第1-4题。

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:认识公倍数和最小公倍数。

  教学难点:掌握找到10以内两个数的公倍数和最小公倍数的方法。

  教学准备:

  长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

  教学过程:

  一、经历操作活动,认识公倍数

  1、操作活动。

  提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生独立活动后指名在实物展示台上铺一铺。

  提问:通过刚才的活动,你们发现了什么?

  引导:

  ⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?

  ⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

  2、想像延伸。

  提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  3、揭示概念。

  讲述:6、12、18、24既是2的倍数,又是3的倍数,它们是2和3的公倍数。

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。

  引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索。

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的'公倍数的?又是怎样确定6和9的最小公倍数的?

  ②先找出6的倍数,再从6的倍数中找出9的倍数。

  ③ 先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:②和③有什么相同的地方?哪一种方法简捷些?

  2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。

  3、用集合图表示。

  指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、完成练一练

  完成后交流:2和5的公倍数有什么特点?

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、练习四第1题。

  提问:这里在图中要写省略号吗?为什么?如果没有50以内这个前提呢?

  2、练习四第2题。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、练习四第3题。

  集体交流时说说是怎样找的。

  四、全课小结

  提问:今天学习的是什么内容?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问?

  五、游戏活动

  练习四第4题。让学生在小组里玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

5、五年级《公倍数与最小公倍数》教案一等奖

  教学目标:

  1、理解公倍数,最小公倍数的意义.

  2、会用列举法,分解质因数,短除法求两个数的最小公倍数.

  3、会求是互质数或有倍数关系的两个数的最小公倍数.

  4、在知识的探究过程中,培养大胆质疑的习惯.

  教学过程:

  一、导入:

  同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:

  1、全部拔起,重新测量后再种

  2、头尾不动,把中间的全部拔起,重新测量后再种

  3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。

  师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?

  生:通过测量的方法发现的。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。

  师:你们怎么想到“公倍数”这么个好听的名字的?

  生:我们前面学习的几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的`就叫最大公倍数。

  师:大家还有不同的意见吗?

  生:(议论纷纷)这个不是最大的,还有更大的。。。。

  师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)

  师:谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数.

  二、探究:

  看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.

  (为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的最小公倍数是几 等)

  四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.

  成果汇报:

  (1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数 30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公因数 各自独有的质因数

  最小公倍数是两个数的最大公因数与各自独有质因数的乘积.

  ③短除法:如:36和45的最小公倍数

  3 36 45 用公因数去除

  3 12 15

  4 5 除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公因数比较有什么异同之处

  (相同处:都用公因数去除, 除到商是互质数为止.

  不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数.

  4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

6、《求特殊情况下两个数的最大公约数和最小公倍数》教案一等奖设计

  关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流

  内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。

  课堂实录:

  一、复习:

  1、求两个数的最大公约数和最小公倍数的方法各是什么?

  2、求出每组数的最大公约数和最小公倍数(用短除法)

  20和2436和5428和1413和40

  [评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]

  二、导入新课:

  前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不

  是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。

  [评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]

  三、新授:

  1、电脑出示下面几组数,让学生判断每组数成什么关系?

  7和218和912和3614和19

  生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。

  师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短

  除法大家能很快求出来吗?

  生:能

  生:不能

  生:能

  师:下面我们共同来研究一下,看哪些同学说的对。

  师:请分别找出8,9的约数和倍数。韩晓斌严春花

  学生回答完后电脑出示:

  8的约数:1,2,4,8

  9的约数:1,3,9

  8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……

  9的倍数:9,18,27,36,45,54,63,72,81……

  师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。

  生:8和9的最大公约数是1。

  生:8和9的最小公倍数是72。

  师:请同学们再观察8,9,72这三个数之间有什么关系?

  生:8和9都是72的约数。

  生:72是8的倍数,也是9的倍数。

  生:8×9=72,即:72是8和9的乘积。

  师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?

  生:8和9的最小公倍数是它们的乘积。

  师:又因为8和9成互质关系,那么我们从中能得出什么呢?

  生:成互质关系的两个数的最小公倍数是它们的乘积。

  师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?

  师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。

  例如:7和94和53和5

  最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?

  生:成互质关系的两个数的最大公约数是1。

  同样让学生自己验证,最后讨论得出:

  如果两个数是互质数,它们的最大公约数就是1。

  2、请同学们分别找出7、21的约数和倍数。

  学生回答完后电脑出示:

  7的约数:1,7

  21的约数:1,3,7,21

  7的倍数:7,14,21,28,35,42……

  21的倍数:21,42,63……

  师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。

  生:7和21的最大公约数是7。

  生:7和21的最小公倍数是21。

  师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,

  想一想,有什么规律?

  生:7和21的最大公约数和最小公倍数就是这两个数。

  生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。

  生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。

  对

  生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的`较小数,它们的最小公倍数是这两个数中的较大数。

  生:求成倍数关系的两个数的最大公约数和最小公倍数时,大小,

  对

  小大。

  这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?

  这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。

  同时,让学生自己举例验证得出的结论是否正确。

  最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。

  [评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]

  四、反馈练习:

  很快说出每组数的最大公约数和最小公倍数。

  9和367和1329和3013和5236和725和17

  [评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]

  五、总结:

  你有什么感想和收获?

  [评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]

  六、作业:(略)

  教学反思:

  数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。

  学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。

  反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。

  教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!

7、公倍数与最小公倍数优秀教案一等奖设计

  说课:

  “公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。

  由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。

  教学目标:

  1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。

  2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的习惯。

  教学过程:

  一、情景导入

  1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?

  出示课题:公倍数

  谁能用自己的话说一说什么叫公倍数?

  这一个是最小的,我们又称它为什么?

  补充课题:最小公倍数

  谁能再来说一说什么叫最小公倍数?

  今天我们就来研究公倍数与最小公倍数。

  二、探究

  1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。

  2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。

  3、成果汇报:(由学生任选一种方法)

  (1)公倍数有多少个?

  (2)求最小公倍数的几种方法:

  ①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):

  ②分解质因数:如:12与30的最小公倍数(见上右图)

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  =2×3×2×5=60

  从这两个分解质因数的式子里你能看出12与30的最大公约数是几?

  最大公约数与最小公倍数之间有什么关系?参见下左图。

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  短除法:如求:36和45的.最小公倍数,参见上右图。

  讨论:与求最大公约数比较有什么异同之处?

  短除法与分解质因数有什么联系?

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20;65和130;4和15;18和24。

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。

  4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?

  三、回家作业布置(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

  教学反思:

  我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。

8、五年级数学公倍数与最小公倍数教学设计一等奖

  教学目标

  知识与技能:

  1、通过看微视频,能掌握公倍数、最小公倍数两个概念。

  2、能理解求最小公倍数的算理,掌握求最小公倍数的方法。

  过程与方法:在观看微视频过程中,初步掌握求两个数的最小公倍数的方法。

  情感、态度与价值观:培养学生观察能力,独立思考能力和抽象概括的能力。

  教学重点:理解公倍数、最小公倍数的概念。

  教学难点:初步掌握求两个数的最小公倍数的方法。

  教学准备:微视频、课件。

  教学过程:

  一、谈话导入。

  今天,我们请来一位新老师来给大家上课。

  二、新课教学

  1、播放微视频。

  (1)2、4的倍数有:4、8、12、16、20、24、28、36……6的倍数有:6、12、18、24、28、32、36……

  (2)你发现了什么?

  (3)什么是公倍数?什么是最小公倍数?

  (4)想一想,两个数有没有最大公倍数?

  (5)例2:怎样求6和8的最小公倍数?(学生思考方法)你们都有什么好的办法吗?

  学生先尝试独立思考,用列举法先独立完成,完成后,在小组内交流、讨论。

  微视频介绍筛选法。

  (6)小组合作完成后做一做,发现规律,总结方法。

  2、同学们,你们学会了吗?今天你学会了什么,主要学习了什么内容?(板书课题:最小公倍数),你学会了有关公倍数的哪些内容?

  小组内交流,说一说。

  汇报结果:几个数公有的倍数,叫做这几个数的公倍数;其中,公倍数中最小的一个,叫做这几个数的最小公倍数。互质关系,最小公倍数是两个数的乘积,倍数关系,最小公倍数是较大一个数。(板书)

  三、课堂练习

  1、填一填。

  2、找一找。

  3、求下列每组数的最小公倍数(口答)

  4、教材练习十七第1题。

  5、练习十七第7题。

  6、练习十七第2题。

  四、课堂小结今天你有什么收获?

  五、作业

  练习十七第5题。

  六、板书设计

  最小公倍数

  几个数公有的倍数叫做它们的公倍数;公倍数中最小的一个叫做最小公倍数。

  两个数成互质关系,最小公倍数是两个数的乘积,两个数成倍数关系,最小公倍数是较大一个数。

9、五年级数学公倍数与最小公倍数教学设计一等奖

  教学内容:五年级下册P22—24内容教学目标:

  1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。

  2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

  教学过程:

  一、解决问题:

  1、呈现问题:

  (1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

  学生说猜想结果和想法。

  (2)实践验证:

  请小组拿出小长方形和画有正方形的纸,动手铺一铺。

  (3)反馈交流:

  A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

  (4)深入探索:

  这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

  (5)反馈交流:

  A板书数据:6、12、18、24……

  B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?

  C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

  2、揭示概念

  (1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。

  (2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

  (3)辨析:16是2和3的公倍数吗?为什么?

  二、探索方法,优化策略。

  同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

  1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

  2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

  3、反馈呈现多种方法

  方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。

  方法二:先找出6的倍数,再从6的倍数中找出9的倍数

  方法三:先找出9的倍数,再从9的倍数中找出6的倍数

  可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

  4、评价方法:

  方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

  5、出示集合图。

  6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

  三、综合练习,拓展提升。

  1、完成练一练

  2、完成练习四1——4

  3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

  四、全课总结,畅谈收获。

  五、解决实际问题(见小小设计师)

  药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

  教学反思:

  本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

  1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

  2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

  3、适度显睿智。在练习部分,教材能尊重学生的.思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

10、《最小公倍数》教案一等奖

  教学内容:人教版义务教育教科书数学五年级下册第68—69页。

  教学目标:

  1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

  2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。

  教学难点:用不同的方法求两个数的公倍数和最小公倍数。

  教学过程:

  一、游戏导入

  同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。

  师:想一想,他们为什么站起来两次?

  生:因为他们既是4的倍数也是6的倍数。

  师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。

  二、自主探索

  (一)公倍数和最小公倍数的概念

  1. 回忆学习方法

  师:请同学们回忆,我们是怎样研究公因数的?

  生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。

  师:我们就用这样的方法来研究游戏中4和6的公倍数问题。

  2. 自主探究

  学生在练习本上独立找出4和6的公倍数。

  3. 汇报交流

  学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)

  4. 小结概念,课件演示集合图。

  12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。

  设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。

  (二)求两个数的.公倍数和最小公倍数的方法。

  师:请用你想到的方法找出6和8的公倍数和最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生交流方法有:

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6 的倍数:6,12,18,24,30,36,42,48,……

  8 的倍数:8,16,24,32,40,48,……

  6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24

  ②用集合图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?

  师:这么多方法,你喜欢哪一种?

  通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?

  练习:18和24 15和25

  三、课堂练习:

  找出下面每组数的最小公倍数,看看有什么发现?

  3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10

  交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  你能举个例子吗?

  四、独立作业:数学书71页2题

  五、课堂小结:

  师:今天学习了什么知识?你有什么收获?

  生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

  找两个数公倍数和最小公倍数的方法等等。

  板书设计:

相关文章

推荐文章