说课稿

七年级数学下册《6.1平方根》一等奖说课稿

2023-09-11 09:11:33

  七年级数学下册《6.1平方根》一等奖说课稿

七年级数学下册《6.1平方根》一等奖说课稿

1、七年级数学下册《6.1平方根》一等奖说课稿

  作为一名默默奉献的教育工作者,常常要根据教学需要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。那么写说课稿需要注意哪些问题呢?以下是小编整理的新课标人教版七年级数学下册《6.1平方根》说课稿范文,欢迎大家分享。

  一、教材分析

  (一)教材的地位与作用

  本节内容是人教版七年级下册第六章第一节的第二课时,在此之前,刚学过算术平方根,而平方根这一节内容不仅是为今后学习二次根式、一元二次方程准备知识,而且它完成了数的范围的扩大,从有理数扩充到了实数,同时让代数运算得以了完善,在乘方的基础上引入了开平方运算,因此学好本节知识是学好后续知识的主要纽带,起着承前启后的作用。

  (二)教学目标

  (1)知识技能使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的.表示法和求非负数的平方根掌握平方根性质。

  (2)数学思考通过用类比的方法探寻出平方根的运算及表示方法,并能自我总结出平方根与算术平方根的异同。

  (3)情感态度

  ①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。

  ②通过探究活动,增强学生的合作意识,提高学习热情。

  (三)教材的重点与难点

  本节课的教学重点:平方根的概念及性质。

  本节课的教学难点:求一个数的平方根及平方根和算术平方根的联系与区别。

  二、教法学法

  教法设想采用引导探索法。采用递进练习法。

  用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出平方根的定义,将定义的应用融入到探究活动中。

  三、教学过程

  (一)创设情境导入新知

  (1)为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少?

  (2)学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为50平方厘米的正方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少厘米?

  采用多媒体播放问题情境,前一个问题很好直接回答,而第二个问题就会使学生产生思维上的困惑,从而引发学生的思考,导入平方根。

  (二)启发诱导探索新知

  概念:(类比算术平方根的定义)

  一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根从学生熟知的乘方运算入手,让其积极参与数学创造活动,初步形成概念。

2、七年级数学下册《6.1平方根》一等奖说课稿

  一、教材分析

  (一)教材的地位与作用

  本节内容是人教版七年级下册第六章第一节的第二课时,在此之前,刚学过算术平方根,而平方根这一节内容不仅是为今后学习二次根式、一元二次方程准备知识,而且它完成了数的范围的扩大,从有理数扩充到了实数,同时让代数运算得以了完善,在乘方的基础上引入了开平方运算,因此学好本节知识是学好后续知识的主要纽带,起着承前启后的作用。

  (二)教学目标

  (1)知识技能使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的表示法和求非负数的平方根掌握平方根性质。

  (2)数学思考通过用类比的方法探寻出平方根的运算及表示方法,并能自我总结出平方根与算术平方根的异同。

  (3)解决问题通过学习平方根,培养学生理解概念并用定义解题的能力。

  (4)情感态度①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。②通过探究活动,增强学生的合作意识,提高学习热情。

  (三)教材的重点与难点

  本节课的教学重点:平方根的概念及性质。

  本节课的教学难点:求一个数的平方根及平方根和算术平方根的联系与区别。

  二、教法学法

  教法设想采用引导探索法。采用递进练习法。

  用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出平方根的定义,将定义的应用融入到探究活动中。

  学习方法观察猜测交流讨论分析推理归纳总结

  三、教学过程

  (一)创设情境导入新知

  (1)为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少?

  (2)学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为50平方厘米的.正方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少厘米?

  采用多媒体播放问题情境,前一个问题很好直接回答,而第二个问题就会使学生产生思维上的困惑,从而引发学生的思考,导入平方根。

  (二)启发诱导探索新知

  概念:(类比算术平方根的定义)

  一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根

  从学生熟知的乘方运算入手,让其积极参与数学创造活动,初步形成概念。

3、七年级数学下册《6.1平方根》一等奖说课稿

  一、说教材

  1.教材的地位和作用

  “平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。是今后学习函数、函数与方程、函数与不等式关系的必要知识。所以平面直角坐标系是沟通代数和几何的桥梁,是今后学习的一个重要的数学工具。

  2.学情分析

  学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过上一节《怎样确定平面内点的位置》的学习,对平面上的点由一个有序数对表示,有了一定的认识。

  如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的'只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。

  3.教学重难点及突破

  基于对本节课的认识和学生的学情分析,我将本节课的重点确定为:理解平面直角坐标系及相关概念,能由点写出它的坐标及相关特征,难点确定为:平面直角坐标系中点与有序数对之间的一一对应与数形结合意识的培养。要达到本节课的目标我认为除了要加强学生多练多探索来认识有关的知识外,还必须在“激发学生的学习兴趣”上下功夫,尽量调动学生的学习积极性。

  4.教学目标

  根据新课标要求和学生现有知识水平,从三个方面提出本节课的教学目标:

  知识与技能:

  1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;

  2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。

  过程与方法:

  经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想,体会数学源于生活,初步体验将实际问题数学化的过程和方法。

  情感态度与价值观:

  揭示人类认识世界是由特殊到一般,由具体到抽象的认知规律,激发学生勇于探索的精神。

  二.说教法与学法

  教法:1.自主探索法。用创设情景引导学生从生活实践自主探索新知识;

  2.讲练讨论法。教师讲练引导学生从坐标系概念获得由点求坐标。

  3.游戏激趣法。组织学生进行游戏活动,巩固提高获得的知识,调动学习积极性。

  教学媒体的使用上,用多媒体课件与传统教学方式相结合,对本节课的教学是非常必要的,充分应用多媒体教学直观、形象的优势,在展示坐标平面的建立、坐标的确定上加快了课堂节奏,增大了课堂容量。同时为克服多媒体教学的局限性,利用黑板进行必要的板书,进行适当的演示引导学生正确使用作图工具进行严谨作图,并帮助解决课堂中的突发问题。

  学法:按新课标理念,倡导学生自主主动探索、学习知识,尽可能把“钥匙”交给学生自启知识之门,大胆把课堂交给学生;用讨论探索知识,培养创新意识;培养学生自学能力。

  三.说教学过程

  (一)创设情景,引入新课

  课件展示某城市旅游景点示意图,导入:假如你是导游,你是如何确定各个景点的位置的?.......这就是本节课要研究的问题。

  设计意图:通过提供现实背景吸引学生注意,激发学生的学习兴趣。

  (二)学生自学,提出疑问

  指导学生自学课本第49页和50页,并回答问题。

  1、由条而且有的数轴,组成平面直角坐标系。

  2、水平的数轴称为轴或轴,习惯上取向为正方向;竖直的数轴称为轴或轴,取向为正方向;

  3、两条数轴的交点为平面直角坐标系的点。

  4、直角坐标系分为几个象限?如何区分?

  回到刚开始的图形,学生自主思考:

  1.如果以“中心广场”为原点建立平面直角坐标系,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?

  2.你能分别用有序数对表示它们的位置吗?

  设计意图:锻炼学生的自主学习能力,带着问题阅读课本,经历自主探索的过程,可以让学生加深记忆。以旅游景点为背景,让学生思考身边熟悉景点位置及其表示方法,自然亲切,学生容易接受。

  (三)小组讨论,探索新知

  如何确定平面直角坐标系中点的位置以及点的坐标的表示方法。

  让学生依据对平面直角坐标系的理解,画出平面直角坐标系,并结合图形确定点的位置。

  (1)已知平面内一点Q,如何确定它的坐标呢?

  (2)若已知点p的坐标为(a,b),如何确定点p的位置呢?

  (为了学生更好地叙述坐标的产生,教师可把这种叙述方式固定下来“过点A作横轴的垂线,垂足对应的数字是3,3叫作点A的横坐标,过点A作纵轴的垂线,垂足对应的数字是2,2叫作点A的纵坐标,因此点A的坐标是A(3,2),记忆用一句话表示:先横后纵,逗号隔开,加上括号。)

  设计意图:通过学生自主探究,培养其自学能力和科学探究能力。

  (四)操作演练,培养技能

  完成例1,例2,教师讲解。

  (五)拓展提升

  参照图形,回答:各象限内的点的坐标有何特征?

  坐标轴上的点的坐标有何特征?

  学生分组交流、合作,以小组为单位总结发言。

  设计意图:培养学生分析问题、解决问题的能力和口语表达的能力。

  (六)反思总结,布置作业

  1.通过本节课的学习,你收获到了什么?

  2.你觉得画平面直角坐标系要注意哪些事项?

  作业:必做题:课本第52页习题11.2A组2.3

  选做题:课本第52页习题11.2B组2

  【后记】王老师的说课稿基本符合要求,作为参加工作一年多的年轻教师,应该说付出了不少的心血。放在这里,供老师们思考。王老师对于教材的分析、学情分析、重难点的突破应该说还是思考了许多的。

4、七年级下册《平方根》第一课时教案一等奖

  一、内容和内容解析

  1.内容

  算术平方根的概念,被开方数越大,对应的算术平方根也越大.

  2.内容解析

  算术平方根是初中数学中的重要概念,引入算术平方根,是解决实际问题的需要.作为《实数》的开篇第一课,掌握好算术平方根的概念和计算,一方面可为后续研究平方根、立方根提供方法上的借鉴,另一方面也是为认识无理数,完成数集的扩充,解决数学内部运算,以及二次根式的学习等作准备.

  算术平方根的概念分两个部分,分别是关于一个正数算术平方根的定义和关于0的算术平方根的规定.由算术平方根的概念引出其符号表示、读法及什么是被开方数.

  根据算术平方根的概念,可以利用互逆关系,求一些数的算术平方根.根据这些数的算术平方根的结果,不难归纳得出“被开方数越大,对应的算术平方根也越大”的结论,其间体现了从特殊到一般的思想方法.

  基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.

  二、目标和目标解析

  1.教学目标

  (1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.

  (2)会求一些数的'算术平方根.

  2.目标解析

  (1)学生能说出正数的算术平方根的定义,记住0的算术平方根是0;会用符号表示一个非负数的算术平方根,并能正确读出符号,能够说出中数的名称;理解符号中被开方数≥0(即是一个非负数)的条件,了解也是一个非负数.

  (2)学生能依据算术平方根的定义判断一个数有没有算术平方根;掌握用平方运算求某些数的算术平方根的方法,会求出100以内完全平方数或分子、分母均是这类数的分数的算术平方根,以及上述这类数扩大(或缩小)100倍、10000倍的数的算术平方根;了解被开方数越大,对应的算术平方根也越大.

  三、教学问题诊断分析

  在本课学习之前,学生们已经掌握了一些完全平方数,对乘方运算也有一定的认识.但对于算术平方根为什么只是就正数进行定义,并对0的算术平方根作出规定,大多数学生不习惯.还有就是负数没有算术平方根,这种某数不能进行某种运算的情况在有理数的前五种代数运算中,一般不会碰到(0不能作除数除外);加之算术平方根的符号表示只涉及一个数,这与前面所学都涉及两个数的运算不一样,学生可能难以理解.

  基于以上分析,本节课的教学难点是:深化对算术平方根的理解.

  四、教学过程设计

  1.创设情境,引入新课

  教师展示教科书中本章的章前图,说明这是神舟七号宇宙飞船升空的照片,并提出下面的问题.

  问题1 请同学们阅读本章的引言,你从引言中发现了哪些与数有关的概念?本章将要学习的主要内容以及大致的研究思路是什么?

  师生活动 学生阅读,回答;教师补充说明数的范围不断扩大体现了人类在数的认识上的不断深入,让学生感受数的扩充的必要性.

  设计意图:通过“神州七号载人飞船发射成功”引入本章学习,激发兴趣,增强学生的学习热情.

  2.师生互动,学习新知

  问题2 学校要举行美术作品比赛,小鸥想裁出一块面积为25d的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

  师生活动:学生可能很快答出边长为5d.

  追问 请说一说,你是怎样算出来的?

  师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.

  设计意图:从现实生活中提出数学问题,使学生积极主动的投入到数学活动中去,同时为学习算术平方根提供实际背景和生活素材.

  问题3 完成下表:

  正方形的面积/d

  师生活动:学生不难回答“0的算术平方根是0”,可以表示为“”;教师指明:算术平方根的概念包含“正数算术平方根”的定义和“0的算术平方根”的规定两部分.

  追问(1) 根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?

  师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.

  追问(2) 为什么负数没有算术平方根呢?

  师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.

  设计意图:通过不断追问,由学生思考解决,体会分类讨论,既加深学生对算术平方根的理解,又让学生养成全面考虑问题的习惯.

  追问(3) 请判断正误:

  (1)-5是-25的算术平方根;

  (2)6是的算术平方根;

  (3)0的算术平方根是0;

  (4)0.01是0.1的算术平方根;

  (5)一个正方形的边长就是这个正方形的面积的算术平方根.

  师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.

  设计意图:检验对算术平方根的理解.

  3.例题示范,学会应用

  例1 求下列各数的算术平方根:

  (1)100;(2);(3)0.0001.

  师生活动:教师给出第(1)小题求数的算术平方根的思考过程,学生模仿独立完成第(2)、第(3)小题,两名学生板演后,全班交流.

  追问 从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?

  师生活动:学生比较被开方数的大小以及其算术平方根的大小,试图归纳出结论.如有困难,教师再举一些具体例子加以引导,说明.

  设计意图:通过求大小不同的三种形式的正数的算术平方根的实践,巩固求算术平方根的方法,由特殊到一般归纳出结论:被开方数越大,对应的算术平方根也越大.为下节课学习估计平方根的大小做准备.

  例2 求下列各式的值.

  (1);(2);(3).

  师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.

  设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.

  4.即时训练,巩固新知

  (1)教科书第41页的练习.

  (2)求的算术平方根.

  师生活动:学生独立完成,教师巡视,对个别差生进行辅导.对“求的算术平方根”,要让学生明白此题包含两层运算,即先求=?,然后再求“?”的算术平方根,实际上就是上述例1、例2类型的综合题.

  设计意图:通过练习使学生在了解算术平方根及有关概念的基础上,达到能自己求一个数的算术平方根,进一步巩固、深化对算术平方根的理解.

  5.课堂小结

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)什么是算术平方根?

  (2)如何求一个正数的算术平方根?

  (3)什么数才有算术平方根?

  设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.

  6.布置作业:

  教科书习题6.1 第1、2题.

  五、目标检测设计

  1.若是49的算术平方根,则=( ).

  A.7 B.-7 C.49 D.-49

  设计意图:本题考查学生对算术平方根概念的理解.

  2.说出下列各式的意义,并求它们的值.

  (1);(2);(3);(4).

  设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.

  3.的算术平方根是_____.

  设计意图:本题考查学生对算术平方根概念的全面理解.

5、七年级下册《平方根》第二课时优秀教案一等奖

  一、内容和内容解析

  1.内容

  无限不循环小数;求算术平方根的更一般的方法---用有理数估算、用计算器求值.

  2.内容解析

  无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论.发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程.

  用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力.

  使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法.这完全可以让学生自己完成.

  基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围.

  二、目标和目标解析

  1.教学目标

  (1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值.

  (2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.

  2.目标解析

  (1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围.

  (2)学生会概述利用计算器求一个正数的算术平方根的.程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍.

  三、教学问题诊断分析

  用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间.为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求.

  基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义.

  四、教学过程设计

  1.梳理旧知,引出新课

  问题1 (1)什么是算术平方根?怎样表示?

  (2)负数有算术平方根吗?

  师生活动 学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?

  设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容.

  2.问题探究,学习新知

  问题2 能否用两个面积为1d的小正方形拼成一个面积为2d的大正方形?

  师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法.

  追问(1) 拼成的这个面积为2d的大正方形的边长应该是多少呢?

  师生活动:学生自行解答,教师对解答有困难的学生进行指导.

  追问(2) 小正方形的对角线的长是多少呢?

  师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长d.

  设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备.

  问题3 有多大呢?为了弄清这个问题,请同学们探究“在哪两个整数之间呢?”

  师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程.

  追问(1) 那么是1点几呢?你能不能得到的更精确的范围?

  师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……,在此基础上教师按教科书上的推理进行讲解并板书.说明是一个无限不循环小数,以及什么是无限不循环小数.并要求学生回忆以前学过的数,进行比较.

  追问(2) 实际上,许多正有理数的算术平方根,如,,等都是无限不循环小数.根据估计的大小的方法,请你估计的整数部分是多少?

  设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数.让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础.追问(2)主要为及时巩固估算方法.

  3.用计算器,求算术根

  例1 用计算器求下列各式的值:

  (1); (2)(精确到0.001)

  师生活动:教师指导学生操作,获得问题答案.解答完(2)后,让学生与上面所估计的的大小进行比较,体会夹逼法的可行性.说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同.用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2).

  设计意图:使学生会使用计算器求算术平方根.

  练习 教科书第44页练习1.

  师生活动:学生独立完成后交流.

  设计意图:巩固计算器求算术平方根.

  4.综合应用,巩固所学

  现在我们来解决本章引言中的问题.

  问题4 (1)你会表示出, 吗?

  (2)用计算器求, .(用科学记数法把结果写成的形式,其中保留小数点后一位)

  师生活动:学生理解题意,根据公式,可得,,将,代入,利用计算器求出, .

  设计意图:让学生体会计算器在解决实际问题中的应用.

  问题5 利用计算器计算下表中的算术平方根,并将计算结果填在表中.

  …

  师生共同回顾本节课所学内容,并请学生回答以下问题:

  (1)利用夹逼法来求算术平方根的近似值的依据是什么?

  (2)利用计算器可以求出任意正数的算术平方根或近似值吗?

  (3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?

  (4)怎样的数是无限不循环小数?

  设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯.

  6.布置作业:

  教科书习题6.1第6、9、10题.

  五、目标检测设计

  1.求的整数部分.

  【设计意图】主要考查学生的估算能力.

  2.比较下列各组数的大小.

  (1)与;(2)与12;(3)与.

  【设计意图】主要考查学生的估算和比较大小的能力.

  3.若,,那么_______;_______.

  【设计意图】主要考查学生对算术平方根概念以及有关规律的理解.

  4.国际比赛的足球场的长在100到110之间, 宽在64到75之间, 现有一个长方形的足球场其长是宽的1.5倍, 面积为7560, 问:这个足球场能用作国际比赛吗?

  【设计意图】主要考查学生运用算术平方根解决实际问题的能力.

6、大班英语教案hat do you want? i want ....

  作为一名人民教师,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。教案要怎么写呢?下面是小编收集整理的大班英语教案:hat do you want? i want ....,仅供参考,希望能够帮助到大家。

  目标:

  1、理解what do you want?I want……的.含义,学习想要want、巧克力chocolate的正确发音。

  3、复习"in the morning"中的句式,能进行语言互换。

  2、能在情境的引导下,愉快的参与活动。

  准备:

  1、各种食品,苹果apple,桔子orange,饼干biscuit蛋糕cake,糖果candy,巧克力chocolate

  2、玩具熊、玩具娃娃等。

  3、布置相关的情境环境。

  过程:

  1、导入活动。

  引导幼儿进入情境,复习"in the morning"中的句式,能进行语言互换。内容:

  (1)刷刷我的牙,洗洗我的脸,洗洗我的手,梳梳头。

  Brush my teeth/ wash my face/ wash my hands/ comb my hair

  (2)身体运动

  头头,转转转等等,Head,head,turn around Feet,feet jump and jump

  2、进入情境,学习词句并参与表演。

  (1)教师一人饰演两个角色,利用情节的发展引导幼儿和替代角色互动,并参与活动。

  (2)师生对话,练习句式。

  I、提问:Kala bear的点心屋来了客人,它怎么招待客人的?(what do you want?)客人是怎样回答的?(I want…..)

  II、教师帮助幼儿理解对话的含义。

  III、师生练习对话,分集体、小组、个人练习对话(what do you want?)(I want…..)

  (3)请幼儿参与情境表演。

  I、介绍Kala bear snack room的食品名称,重点纠正(巧克力chocolate)的发音。

  II、幼儿参与游戏,每次2-3人扮演服务生,游戏数次。

  3、游戏:"超级任务",复习对字母"c"的认识。

  玩法:由Kala bear来布置今天的超级任务"在单词卡片中找字母c",谁找到就可以带走点心,还有Kala bear的kiss。

相关文章

推荐文章