说课稿

三年级数学《平行四边形面积的计算》一等奖说课稿

2023-09-19 17:55:39

  三年级数学《平行四边形面积的计算》一等奖说课稿

三年级数学《平行四边形面积的计算》一等奖说课稿

1、三年级数学《平行四边形面积的计算》一等奖说课稿

  一、说教材

  1、教材简析

  平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

  2、教学目标:

  (1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。

  (2)通过操作,让学生尝试用转化的思想方法解决新的问题。

  (3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。

  3、教学重点:平行四边形的面积计算。

  4、教学难点:理解平行四边形面积计算公式的推导过程。

  二、教法学法

  平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作观察思考归纳概括初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知形成表象抽象概念。

  教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。

  三、教学过程

  (一)复习铺垫

  教具逐个出示:

  1、图(1)是什么图形?它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?

  2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?

  学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)

  3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?

  学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)

  (二)导入新课

  图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)

  你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。

  (三)引导探究

  1、学生独立思考,动手操作,尝试计算平行四边形的面积。

  (教师巡视,学生计算1号学具纸片平行四边形的面积)

  谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。

  到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)

  反馈交流:根据学生的回答教具演示“转化过程”。

  演示前先比较两个全等的平行四边形,再将其中一个平行四边形沿着平行四边形的高把图形剪开,将左边的三角形(或直角梯形)拼到右边去,正好是个长方形,量出它的长是7厘米,宽是4厘米,面积是7×4=28平方厘米。

  追问:为什么可以这样算?

  把平行四边形割补成长方形,图形的什么变了,什么没有变?

  比较拼成的长方形的长、宽与原平行四边形的底、高之间的'关系。

  2、操作实践,验证想法。

  是不是所有的平行四边形都能转化成长方形?任意画一个平行四边形或任意取一个学具平行四边形纸片,证明你的想法。(结论:由此看来,对于任何一个平行四边形,要计算它的面积,我们都可以用割补的访求将平行四边形转化成长方形来计算它的面积)

  3、观察分析,归纳公式。

  那么平行四边形的面积该怎样计算呢?为什么?(学生讨论)

  结合回答,教具演示:因为割补的方法把平行四边形转化成长方形,形变面积不变,我们发现,长方形的长相当于平行四边形的底,宽相当于平行四边形的高,所以平行四边形的面积是底乘以高。

  板书:长方形的面积=长×宽

  平行四边形的面积=底×高

  如果用字母S表示平行四边形的面积,a表示它的底,h表示它的高,那么平等四边形面积的字母公式是怎样的?

  (四)小结

  1、面对“平行四边形的面积”这个新问题,我们利用已有的“求长方形的面积知识”,通过转化的方法,推导出平行四边形的面积公式。

  2、现在,你们说说,要求平行四边形的面积,关键是找哪两个条件?

  (五)练习

  1、计算下面平行四边形的面积。(练后讲评)

  2、计算下面平行四边形的面积。

  3、有一块平行四边形草地,底18米,高10米。这块草地的面积是多少?

  (六)课堂小结

  1、这节课,我们学到了什么?有什么体会?

  2、同学们的表现好在哪里?

  *3机动练习:

  计算下面图中平行四边形的面积,正确列式为()。(单位:厘米)

2、三年级数学《平行四边形面积的计算》一等奖说课稿

  作为一名教师,就难以避免地要准备说课稿,是说课取得成功的前提。那么应当如何写说课稿呢?以下是小编为大家整理的三年级数学《平行四边形面积的计算》说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。

  一、说教材

  “平行四边形面积的计算”是九年义务教育苏教版六年制小学数学第六册第四单元第42页——44页的学习内容。教材从一年级第一册起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第七册教材中安排了平行四边形、三角形和梯形的认识,清楚了解其特征及底和高的概念。而本册(第八册)教材中"平行四边形面积的计算"是在学生掌握上述内容的基础上安排的。使整个安排体现了线形的、层递的、系统的体系,这也完全吻合了学生的认知规律和心理特点。

  因此,学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。

  二、教学目标

  认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。

  能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  三、教学重点与难点

  教学重点:掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。

  四、教学对象分析

  建构主义认为,虽然学生要学习的数学都是前人已经建造好了的,但对学生来说,仍是全新的、未知的'。需要每个人再现类似的创造的过程来形成。即学生用自己的活动对人类已有的数学知识建构起自己的正确理解,而不是去仔细地吸收课本上的或教师叙述的现成结论。应该是一个学生亲身参与的充满丰富、生动的概念或思想活动的组织过程。

  随着信息社会的飞速发展,小学中年级的学生已经掌握了必要的信息技术。“几何画板”的简单运用与操作已经成为了小学生形体知识的认知和探究工具。

  在课堂上,学生很容易产生一些“奇异妙想”,“几何画板”凭着强大的交互性给学生以参与的机会,让学生自己操作,实现自我学习,想象力得到充分发挥,是学生成为一个真正的研究者。

  “几何画板”凭借着信息平台的优势,提供了学生反复学习的机会,在学习中,反复使用它,使学生注意力更为集中,极大地激发了学生学习兴趣,调动学生学习的积极性。

  学生在平行四边形的面积公式推导过程中,依据原有知识体系,以“几何画板”为探索工具,通过采用剪—移—拼的方法,对平行四边形进行转化,学生将很容易自主发现规律,及平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。

  五、基本理念

  整堂课在建构主义的理论指导下,充分贯彻新课程标准,从数学自身特点出发,遵循学生学习数学的心理规律,让学生从已有的经验出发,通过各种方式,自主探索,自我研究,积极完成知识的意义建构过程。

  六、教法阐述、学法指导

  本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。

  建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。

  七、教学准备

  提供“几何画板”软件平台和相关课件,制作一个开放式的、且具有人文性的数学专题网站,为学生搭建好协作学习的舞台。

  八、说教学过程

  学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:

  (一)利用“几何画板”创设情境,激情导入

  首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。

  此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。

  ( 二)、利用“几何画板”大胆放手 导学达标

  1、数格子算面积。

  2、猜想平行四边形的面积可能和什么有关?

  3、证明猜想

  在证明猜想是否正确时,大胆放手,指导学生在“几何画板”上操作,并小组合作完成填空:长方形的面积与原平行四边形的面积_________,长方形的长相当于平行四边形的________,因为长方形的面积=_________,所以平行四边形的面积=_________。

  经师生互动、交流,得出了平行四边形的面积计算公式:平行四边形的面积=底X高。

  建构主义提倡在教师指导员下的以学习者为中心的学习,就是强调学习者在学习过程中的认知主体地位。应用“几何画板”,可以创设情境,让学生主动参与到数学活动中,亲自去体验,更强烈地激发学生装的学习兴趣,可以更全面、更方便地揭示新旧知识之间的联系,为学生实现“意义建构”创造了良好的条件。

  (三)、利用网络,精心设计形式多样的练习。

  传统的板演练习只能暴露几个学生的学习情况,代表性不强,在网络教室中,教师可以根据需要调阅任意一个学生的学习情况,以便及时地加以纠正。在本课中,我把练习设计设计成“试试你的本领”。让学生自由上网自由选题进行训练。同学可以调阅学习伙伴的学习情况。也可以利用网络进行讨论。能力差点的学生可以得到更多的关心,真正体现生生互动。

  (四)、归纳总结,拓展延伸

  教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。教师顺势揭示了课题,突出重点。

  课末提出了“你还能用折纸或其他方法证明平行四边形的面积计算公式吗?”。鼓励学生想出多种方法来证明平行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。

  在课的组织形式上,我们将通过 “师生互动”、“生生互动”和“人机对话”等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到“信息互补”、共同提高的目的。

  纵观本课设计,我们则坚持以“学生为本”“以学定教”的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。

3、三年级数学《平行四边形面积的计算》一等奖说课稿

  一、说教材

  (一)教学内容:人教版六年制小学数学课本第九册“多边形面积的计算”中的“平行四边形的面积计算”。

  (二)教材分析:

  (1)教材的内容和地位:

  教材的主要内容是:“平行四边形的面积计算”。本节课的学习,要求学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。很显然,这节课起到承前启后的作用。

  (2)材编写的特征:

  教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和来源。

  (三)教学目标:(知识目标、能力目标、情感目标)

  1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

  2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。

  3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  (五)教学重点、难点:

  教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。

  教学难点:使学生理解平等四边形面积公式的推导方法及过程。

  利用知识迁移及剪、移、拼的实际操作来分解教学难点。平行四边形面积公式的推导,关键是平行四边形与长方形的面积相等转化问题的`理解,主要找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

  (六)教具、学具准备:

  多媒体、平行四边形课件,学生准备任意大小的平行四边形纸片、三角板、剪刀。

  二、说教法、学法

  (一)说教法

  本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。在本节课中,以小组为单位共同合作完成;培养学生自主、探究、合作的精神。让学生亲身体验知识的形成过程,促进学生思维的发展。

  教法的体现:(1)在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。(2)在探究过程中,我很重视学生动手操作,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

  (二)说学法

  坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

  “学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力。

  三、说教学过程:

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学教程分为以下几个教学环节。

  (一)创设情境,设疑引入

  1 复习 我们前面学习了很多的平面图形,老师这里有一些图形大家认识一下。多媒体出示一组图形,让学生说一说各是什么图形。并回答那些图形的面积会计算。

  2以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备DD成为一名探索者,为充分发挥学生主体作用奠定了基础。

  (二)操作探索,推导公式

  1、数方格法求面积(课件出示) 数完后,问问学生结果如何?你发现了什么?

  这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积和它的底和高有关系,并得知平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积就相等。

  2、转换法

  教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?

  然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?

  学生动手若干分种,教师要注意巡视,可选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。

  3、归纳:

  提问:这个平行四边形转换成了什么图形?它们的面积有变化没有?拼成的这个长方形与平行四边形的底和高有什么关系?

  得出结论:平行四边形的面积=底×高。

  用字母怎样表示?S=ab

  在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  (三)实际应用:

  1.计算停车场的面积。

  2.变式练习。

  3.拓展练习。

  四)全课总结,质疑问难。

  问学生:这节课我们学习了什么,你学会了什么?

  主要目的是了解学生对这节课的知识有一个全盘的认识,培养学生整理知识的能力。

  四、板书设计:

  长方形面积  = 长 × 宽

  平行四边形面积 = 底 × 高

  S=ah

  课后反思

  建构主义的学习观认为,对学生的学习,必须赋予“真实性”的学习任务。这种“真实性”的学习任务可以驱动学生迅速产生学习的需要。基于这一认识,本课创设的问题情境是以校园风景图为引入,绿色文明指示牌为的图形为疑问,说说他们的面积,猜想,设疑。引发兴趣。这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备DD成为一名探索者,为充分发挥学生主体作用奠定了基础。

  在学生探索活动开始之前,教师没有任何帮助,但正是这种没有铺垫的教学,学生真实的思维活动得到了体现,问题解决的策略不再像前述教学整齐划一,课堂更加丰富多彩,教学过程充满了生命活力。实践证明,学生完全具备独立解决问题的能力,他们的成长并不需要教师“迫不及待”的帮助,他们需要经历从混沌到清晰的过程、正确与错误的考验,他们需要的是探索的时空、交流的机会和心理安全的、富有激励性的学习氛围,这些才是学生需要的帮助。

  在操作探索,推导公式中。先启发谈话,猜测平行四边形的面积,然后让学生实践操作,让学生拿出剪好的平行四边形,每四人一组,想一想,动一动,拼一拼,看能不能把一个平行四边形拼成一个面积相等的长方形呢?

  学生动手若干分种,教师要注意巡视,选择做得对的小组派一名学生给全班演示,说说你们的想法。然后教师再重点的演示和完善的叙述平移(可能学生说得不准确)。这样让学生凭借“独立思考、小组交流互评”的渐进过程进行充分的自主探究,在“亲历”和“体验”中初步感悟计算平行四边形面积的方法。这样设计,让学生经历从特殊问题到一般问题的过程,使得学生的数学学习做到重点突破,为后面进一步学习面积公式作好铺垫。当然,在这个环节中不管是操作还是汇报,感觉还不够到位。

4、三年级《平行四边形的面积计算》的教学设计一等奖

  教学内容:

  苏教版第八册第42页“平行四边形面积的计算”

  教学目标:

  1、发现平行四边形面积的计算方法。

  2、能类推出平行四边形面积的计算公式。

  3、能准确进行平行四边形面积的计算。

  4、培养学生的动手操作、观察、分析、类推能力。

  5、渗透转化思想,培养学生的空间观念。

  教学重点:

  掌握平行四边形面积的计算公式,准确计算平行四边形面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教学具准备:

  自剪平行四边形,作业纸,课件。

  教学过程:

  一、 复习铺垫:

  1、看老师给你们带来了这样三个图形(屏幕出示书42页图),这里的每个小方格都表示1平方厘米。第一个是什么图形?(学生一起答),它的面积是多少呢?你是怎么样知道的?(指名回答)还有什么方法能很快求出它的面积呢?(指名回答)

  2、再看第二个图形,面积是多少呢?你是怎样知道的? 第三个呢?

  3、师小结:像这两个图形我们可以通过剪、移、拼转化成长方形用长乘宽就能很快求出它们的面积了(同时板书划线部分)

  二、 引导探索、揭示新知:

  1、出示第42页上的图形。师:再看,这是个什么图形?(同时屏幕出示平行四边形)仔细观察它的底是多少?高是多少?(指名回答)

  有谁知道它的面积是多少?你怎么知道的?

  那不数方格,能不能也象计算长方形的面积那样,用一个公式来计算平行四边形的面积呢?

  这节课我们就要通过做实验来发现计算平行四边形面积的好方法。(同时师板书:平行四边形面积的计算)

  2、实验操作

  (1) 提问:大家想,平行四边形可转化成什么图形来推导它的面积公式?(转化成长方形)

  (2) 下面我们就来做平行四边形转化成长方形的实验,请同学们拿出1号平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!

  (3) 拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(投影仪上展示)

  (4) 为什么要沿高剪开呢?(因为长方形的四个角都是直角)

  3、演示: 下面老师演示转化的过程,请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。请看屏幕。

  第一步画:从平行四边形一个钝角的顶点向对边作高。

  第二步剪:沿高把平行边形剪成两部分。

  第三步移:把左边的直角三角形平行移动到右面边。 也可以这样:沿平行四边形中间的'任意一条高把平行四边形剪成两部分,把左边的直角梯形平行移动到右边。 请大家把剪掉的部分还原,再平移一次。

  4、公式推导

  (1)现在大家已经学会通过画、剪、移的方法可以把平行四边形转化成长方形了,下面请同学们把你自己剪的两个同样大下小的平行四边形,在你已经知道它们底和高的情况下,把其中一个平行四边形转化成长方形后填表,然后在小组交流,你发现这个长方形与原来的平行四边形有什么关系?

  根据回答板书:

  长方形的面积 长 宽

  平行四边形的面积 底 高

  (2)你的长方形面积怎样计算?那么你原来的平行四边形面积可以怎样计算?指名完成板书

  同学们真不简单,终于自己动手找到了平行四边形的面积公式,大家把公式齐读一遍。

  请同学们回忆一下刚才的实验过程,想一想:这个公式是怎样推导出来的?(先… 发现 … 因为 … 所以)指名说说推导过程。

  师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。

  5、教学字母公式

  如果平行四边形的面积用字母s表示,底用a,高用h表示,那么平行四边形面积的计算公式可以写成:

  s = a×h 再含有字母的算式里,字母和字母中间的乘号可以记作“.”或省略不写,所以这个公式还能写成:s = a.h 或s = ah 齐读一遍

  三、 应用公式、尝试例题

  1、出示例题:一块平行四边形玻璃,底是5分米,高是7分米,它的面积是多少平方分米?

  问:题目中要求的是什么形状物体的面积?告诉了什么条件?请试着做一做

  (1) 指名板演 (其余学生做在课堂练习本上)

  (2) 集体评讲

  2、小结:到此为止,求平行四边形的面积,一共学了两种方法,第一种数方格求面积,第二种应用公式计算,哪一种方法更简便?

  四、 巩固练习

  同学们拿出你?钠叫兴谋咝危??菽愕氖?荩?ü?裉煅?暗闹?独纯伎即蠹摇#ㄑ?~3名)

  五、 全课总结

  通过这堂课的学习你有什么收获?

  师:为了推导平行四边形的面积公式,我们首先把平行四边形转化成长方形,通过操作实验发现,这个长方形的面积与原来的平行四边形的面积相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等,从而推导平行四边形的面积公式。这种转化的思想在今后的学习中还会经常用到,希望同学们能很好掌握。

  六、 学到这儿,你有没有这方面知识的思考题来让大家动动脑?

  机动思考题:

  1、一个平行四边形的面积是12平方厘米,请你算一算它的底和高各是多少?

  2、选择条件,用两种方法算出平行四边形的面积,看看是否相等?

5、数学五年级上册《平行四边形的面积》的教案一等奖

  教学内容:

  人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》

  教学目标:

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教具准备:

  课件、平行四边形纸片、剪刀、直尺、三角板等。

  学具准备:

  2块平行四边形彩色纸片、三角板、直尺、剪刀

  教学过程:

  师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

  一、情境创设,揭示课题

  1、创设故事情境

  同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

  2、复习旧知,揭示课题

  (1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)

  (2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

  (板书课题:平行四边形的面积)

  二、自主探究,操作交流

  1、大胆猜想

  师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

6、数学五年级上册《平行四边形的面积》的教案一等奖

  一、说教材

  (一)教学内容

  义务教育六年制小学数学课本(试用)第八册第三单元“平行四边形、三角形和梯形”中的“平行四边形的面积计算”。

  (二)教材分析:

  平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

  教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。

  在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

  几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

  (三)学生分析:

  学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  (四)教学目标预设:

  结合本节课所学知识特点和学生的思维特点现拟定如下目标:

  1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的'计算公式,并能正确计算平行四边形面积。

  2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。

  3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。

  4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  (五)教学重点、难点及关键点剖析:

  通过实践――理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

  (六)教具、学具准备:

  多媒体、平行四边形,学生准备任意大小的平行四边形纸片、三角板、剪刀。

  二、说教法、学法

  (一)设计理念:

  《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。

  “问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。

  数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。

  每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。

  学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。

  (二)说教法

  本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。

  在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

  在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

  在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

  (三)说学法

  坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

  小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

  “学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。

  三、教学过程

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:

  (一)创设情境,设疑引入

  王林家和张强家各有一块地,如图:

  4米 4米

  王林家 张强家

  6米 6米

  可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和平行四边形面积的大小?为什么?主要是向学生暗示了当长方形与平行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到平行四边形的面积与底和高有关。王林家的地是长方形,我们能求出面积。而张强家的地是平行四边形,怎样来求平行四边形的面积呢?这就是我们今天要研究的平行四边形的面积计算。

  这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

  (二)操作探索,推导公式

  1、数方格法求面积(出示)

  给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1平方厘米)数完后,你发现了什么?

  这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

  2、动手实践,推导公式

  ①实践操作

  教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积到底与什么有关?再通过出示:当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?然后让学生实践操作,想办法把平行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。

  让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。

  ②归纳方法

  提问:剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  3、学习例题

  例 一块平行四边形的草地,底是18米,高是10米。这块草地的面积是多少?

  这道例题及时地巩固了所学知识。

  (三)巩固练习,应用深化

  1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试

  2.完成P71练一练1、2

  3.选择正确的算式:

  求出下图的面积(单位:分米)

  A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。

  4.猜谜游戏:

  有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。

  并说明等以后学习了分数乒,还会有更多的答案。

  5.思考题

  用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?

  (单位:厘米)

  (四)全课总结,质疑问难

  让学生说说本节课学到的知识,并说说是怎样学到的,还有什么问题要与教师或同学们商讨吗?目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力,和质疑问难的能力。

  附板书设计: 长方形面积= 长×宽

  平行四边形面积= 底×高

  四、说预设效果

  这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

7、数学五年级上册《平行四边形的面积》的教案一等奖

  教材分析

  “平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础

  学情分析

  1.    学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

  2.     但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标

  1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

  2.过程与方法目标:

  (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

  (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

  3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  教学重点和难点

  重点:理解掌握平行四边形的面积计算公式,并能正确运用。

  难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学过程

  (一)情境引入,以旧探新

  这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的`学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

  这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

  为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)

  (二)自主探究

  方法一:用数方格的方法求平行四边形的面积

  以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

  1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

  根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

  2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

  (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

  (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

  (三)动手操作,验证猜想,得出结论

  方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

  1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

  (2)学生实验操作,教师巡视指导。

  3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

  (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

  (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

  (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

  (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

  4.全班交流推导公式:

  (1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

  (2)有没有不同的剪拼方法?(继续请同学演示)。

  研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

  (3)板书平行四边形面积推导过程

  (4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah

  三、运用公式,解决实际问题

  知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

  1.出示书上82页的1题,请大家做一做。

  2.汇报交流:谁来说一说你是怎么做的?

  3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

  四、巩固练习

  1、试一试

  计算下列平行四边形的面积,与同学说说你的方法。

  35cm      20dm    4.8m

  26cm     28dm     5m

  公式:     公式:    公式:

  列式:     列式:    列式:

  2、我能填得准。

  (1)平行四边形的面积公式用字母表示为(    )。

  (2)一个平行四边形的底是9cm,对应的高是4cm,面积是(    )。

  五、课堂总结

  反思一下刚才我们的学习过程,你有什么收获?

相关文章

推荐文章