《烙饼问题》教学设计一等奖
1、《烙饼问题》教学设计一等奖
教学内容:人教版四年级上册第七单元“数学广角——烙饼问题”。
教学目标:1、让学生通过简单的烙饼问题,初步体会运筹思想在解决问题中的应用。
2、让学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中简单的问题,初步培养学生的应用意识和解决实际问题的能力。
4、使学生逐渐养成合理安排时间的良好习惯。
教学重点:寻找合理、快捷的烙饼方案。
教学难点:初步培养学生形成从多种方案中寻找最优方案的意识,提高解决问题的能力。
教具准备:课件、三张圆片
一、创设情景导入新课。
课件多媒体出示图片:鸡蛋。
师:孩子们,请看,这是——鸡蛋。煮熟一个鸡蛋大约用5分钟的时间,煮熟5个鸡蛋大约用多长时?(学生作答)
师:孩子们,在我们的生活中有很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的策略。(板书课题)
二、自主探索,探究烙法
(一):解读信息,理解烙饼规则
课件出示情境:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?(生答)
师:每次只能烙两张饼是什么意思?两面都要烙呢?(生答)
(二)观察法,探究两张饼的最优烙法
1、明确烙一张饼的时间。
师:想一想,如果烙一张饼,需要多少时间?(生:6分钟)
为什么是6分钟?(生答)
师:为了交流方便,老师用流程图把刚才这位同学说的烙饼过程记录下来。
板书:一张: 正 反①②③
3 3 6分
2、研究2张饼的最优方案
师:想一想:如果烙两张饼,怎么烙?有几种可能?
生:12分钟
师:你是怎么烙的?(生答,师板书)
板书:两张:①正 ①反 ②正 ②反
3 3 3 3 12分
师:还有不同意见吗?生:6分钟。
师:你是怎么烙的?(生答)师:你能来给大家演示一下吗?(生演示,师板书)
两张:①正②正 ①反②反
3 3 6分
师:孩子们,现在烙两张饼出现了两种不同的答案,哪种烙法最快?那为什么第一种烙法多用了6分钟?
师:也就是说本来可以两张饼放在一起烙,而第一种每次只烙了一张,浪费了空间,也就浪费了时间,所以多用了6分钟。现在如果要尽快的把饼烙熟,你会选择哪种烙法?(生答)我们给第二种烙法取一个名字,就叫两饼同烙。(板书)
(三)动手操作,探究3张饼的最优烙法
师:孩子们,请看大屏幕,现在妈妈要烙几张饼。(3张)看看小精灵提的什么问题,谁来读一读?(生读)那怎样才能尽快吃上饼呢? (生答)
师:说得真好。下面我们就一起来动手操作一下,看看怎样才能把3张饼尽快的烙熟,在动手之前,请看清要求。课件出示数学信息,探究要求。
师:请小组长拿出3张圆片,就当3张饼,小组合作,现在开始。(生摆,师巡视)
师:同学们,你们的饼烙熟了吗?哪个小组来汇报一下,你们烙3张饼用了多少时间?(生:12分钟)
说说你是怎么烙的`?(生说,师板书)
3张 ①正②正 ①反②反 ③正 ③ 反 12分
师:还有不同意见吗?(生:9分钟)请你来说说是怎么烙的?(生边说边演示,师板书)
3张 : ①正②正 ①反③正 ②反③ 反 9分
师:同学们,请同学比较这两种不同的烙法,为什么都是烙3个饼一种需要4次,另一种需要3次?
引导归纳:常规的烙法,先把两个饼放进去,正反面烙完后,再烙第三个。第三个饼的两面得一面一面来,浪费了其中一个位置。经过合理安排,烙饼的时候尽可能使锅里有两张饼在那里一起烙。这样就不会浪费时间,最省时间。也就是说我们在平时解决问题时,不同的问题要用不同的方法来解决,它的效果是不一样的。像这种轮流交换着烙确实快。这个烙法帮我们解决了数学难题,你能给她取个名字吗?(交替烙、轮流烙)板书:交替烙
同学们,不管做什么事情,事先作好合理安排,这样就能节约时间,提高效率。所以,生活中我们要合理安排时间。
三、总结方法,探究规律
师:接下去要研究4个饼,还是这几个条件,不过要求提高了,你能不能不动手摆就知道怎么烙最节省时间?先静静的想一下,怎样讲解让大家能听明白?实在想不出来的只好借助学具帮忙帮忙。
1、反馈烙4个饼的方法。
师:如果烙4个饼,怎么烙?(生答)师板4分成2个2个。能不能说得更简单一些?你可以说2个2个烙。最少花几分钟?如果老师请一个同学上来烙一烙,我们帮她数烙饼的次数,就会发现4个饼最少烙几次?
2、反馈烙5个饼
师:如果烙5个饼,怎么烙?你能不能马上说出烙5个饼最少烙几次吗?最少花几分钟?(生答)
烙6、7、8、9、10个饼出示课件
师:请你们仔细观察大屏幕上的表格,如果要烙6、7、8、9、10个饼,分别最少要烙几次,需要多长时间?(生答)
师:请仔细观察这个表格,你发现了什么?
得出:最短的总时间=烙饼的次数×烙每一面饼时间 (1除外)
烙饼的次数=烙饼的个数(1除外)
师:找着了规律解决问题就容易多了,接下来我们运用这条公式来解决一个问题。如:如果要给我们班的每一位同学都烙一个饼,最少需要几次?最少需要几分钟?
所以,在生活节奏如此之快的社会里,我们更应该合理安排时间,去做更多的事。
四、结合生活、实践应用:
五、课堂总结
师:学了今天这节课,你想说什么?
师小结:老师也希望大家能够运用我们今天所学的知识,合理地安排好自己的时间,在以后的学习和生活中提高效率,做一个珍惜时间的人。
2、《烙饼问题》教学设计一等奖
教学目标
基础目标
1.通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2.认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
发展目标
1.通过实例理解优化的思想,形成从多种方案中寻找最优方案的意识,提高解
决问题的能力。
2.感受数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题
教学重点:体会优化思想
教学难点:理解烙3张饼的最佳方法。
教学准备课件制作、确定分组形式
教学形式自主探究、小组合作(组内异质,组间同质,按学生能力由低→高依次编号①②③④)
教学过程
小班特征活动预设
引入
一、课前谈话,激发兴趣。
1.同学们,人有两大宝,你知道是什么吗?猜猜看。(双手和大脑
2.说得非常正确,今天我们就用自己的双手合大脑来解决生活中的一个数学问题,好不好?
二、创设情境,解读信息。
1.(板书:饼)饼,你吃过吗?吃过哪些饼呢?
2.(板书:烙)“烙”,是指放在器物上烤熟的意思,烙饼是把饼放在器物上烤熟。这节课,我们一起来研究和学习烙饼问题。
三、自主探究,研究烙法。
探究双数张饼的最优烙法
1.课件出示图:这位阿姨家今天来了好几位客人,阿姨要烙饼招待客人,我们一起帮阿姨烙饼好吗?你从图中读懂了哪些数学信息?(最多烙2张、两面都烙、每面3分钟)
(1)烙一张饼最快要几分钟呀?你是怎么想的?请同学们把一只手当饼,数学书当锅,一起演示烙的过程。
嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了。
烙了计策?听到几声嗤啦声,烙了几次?
(2)烙两张饼最快要几分钟呢?最快是什么意思?
谁来演示?
(3)为什么烙一张饼和烙2张饼的时间都是6分钟(一样多)呢?可以同时烙,同时烙有好处吗?“同时”这两个字用得好。老师给他写下来
现在,我们一起来烙2张饼(嗤啦,三分钟,正面熟了,嗤啦三分钟,反面熟了,听到几声嗤啦声,烙了几次?)
(4)你可以将烙饼的过程写下来或画下来吗?试试看。
2.(1)有了刚才的经验,烙4张饼最少需要几分钟呀?你又是怎么想的?
(2)同桌再用双手做饼,来烙4张饼,开始!学生动手操作4张饼的烙法。请同学上台演示。烙了几次?
3.(1)现在我们已经有很多烙饼经验了,烙6张饼要几分钟呢?你又是怎么想的?(6+6+6=18分钟)
(2)谁愿意到黑板上用手做饼,烙给大家看一看。
指名学生上台,在黑板上画好的圆圈里演示6张饼的烙
法。
4.总结偶数张饼的烙法:两张两张同时烙。
请你仔细观察偶数饼的烙法:你发现了什么秘密?
四、合作交流、探究烙法。
烙三张饼问题的优化
1.爸爸回来了,那3张饼最少要几分钟呢?要达到最快,我们要考虑什么?把象棋当作饼,摆一摆,并把你的过程写下来或画下来。
要求:(1)先独立思考
(2)小组讨论。
小组轮流说说自己是怎么安排的?烙了几次?自己的方案一共需要多长时间烙完?
记录员负责纪律你们组的方法。
汇报员准备汇报
【预设】方法一:一张一张地烙,共18分钟;
方法二:先烙两张,再烙一张,共12分钟;
方法三:先烙1、2号饼的正面,接着烙1号饼的反面和3号饼的正面,最后烙2、3号饼的的反面,有9分钟。
【机动】如果学生想不到第三种方法则进行启发引导:
在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?
(3)讨论:
①上面三种方法是否都可行?哪种方法最好?为什么?
②为什么这样烙只需要9分钟?一开始的烙法有什么问题?
(一开始的烙法中,烙第三张饼时锅的另一半资源(烙的位置)浪费了。而交替烙则没有这个问题。)没错。交替烙最大限度地使用了锅的资源,从而节约了烙的时间。
小结:我们称这种最省时间的方法为烙3张饼的“最佳方法”
(4)好,一个同学的2只手当作2张饼,另一个同学的1只手当作1张饼,把2本书叠在一起当作锅,同桌合作烙3张饼,开始!同桌合作,开始烙饼。
2.下面该烙几张饼啦,5张饼,四人小组讨论一下,看哪个小组烙的最快。
预设:方法一:3+29+6=15分钟
方法二:演示同学们看明白了吗?
3、《烙饼问题》教学设计一等奖
教材简析:
本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。
学情分析:
1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。
2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。
3、学生认知障碍点:“优化”的理解。
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
教学重点:
体会优化思想。教学难点:探究解决问题的最佳方案。
教学过程:
一、 教学环节:
1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。
二、 教师活动:
1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。
三、 预设学生行为:
1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。
四、 设计意图:
从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。
板书设计:
烙饼问题
快速烙饼法
饼速X3=所需最少的时间
学生学习活动评价设计:
充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。
4、《烙饼问题》教学设计一等奖
教学目标:
1、在经历烙饼的具体过程中学会怎样合理安排最省时间,从而体会做事情要进行合理的安排。
2、尝试从优化的角度在解决问题的多种方案中寻找最合理的方案,培养学生分析问题的能力。
3、感受运筹思想在日常生活中的广泛应用,逐渐养成合理安排时间的良好习惯。
教学重点:
初步培养学生形成从多种方案中寻找最优方案的意识。
教学难点:
寻找合理、快捷的烙饼方案。
教材简析:
《烙饼问题》是人教版教材四年级上册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的运用。这部分知识对学生来说,比较抽象,难以理解。但由于学生在日常生活中都有过看饼如何烙的经历,所以,在这节课的教学中,我想就用这个学生熟悉的情境为切入口,通过例举、观察、合作讨论、优化,形象地帮助学生理解“三张饼如何烙才能尽快让大家吃上饼”,以及归纳出按怎样的顺序安排才会使所用时间的总和最少。
教学过程:
一、预设情景,走进生活。
师:同学们,你们喜欢猜脑经急转弯吗?老师出一个题考考大家:煮熟一个鸡蛋要用5分钟,煮熟5个鸡蛋要用多长时间?
生1:25分钟。一个一个地煮,煮1个需要5分钟,煮5个需要25分钟。
生2:只需要5分钟,把5个鸡蛋一起放进锅里。
师:你为什么会想到5个一起煮呢?5个鸡蛋一起煮既可以节约时间,又可以节约能源,看来只要我们肯动脑筋,连煮鸡蛋这件小事都能找到一个最优的方法。生活中类似的问题还有很多,今天我们就来看看在烙饼问题中,你能不能找到最优方法?
——板书:烙饼问题
(设计意图:利用学生熟悉的生活情景引入课题,既引起了学生的兴趣,又紧扣主题,教学情境简洁有效)
二、围绕主题,探索新知。
1、解读信息,理解烙饼规则。
师:你瞧,妈妈已经开始烙饼了,你从图中得到了哪些数学信息?
生:每次只能烙2张饼;两面都要烙;每面3分钟。
师:每次只能烙2张饼是什么意思?(生:锅里最多只能同时放两张饼)那如果我只放1张饼行吗?师:两面都要烙呢?(一张饼的正面也要烙,反面也要烙)
2、观察法,探究烙2张饼的最优方法。
师:根据图中信息,如果妈妈只烙一张饼,最少需要多少时间?
生:6分钟。先烙熟一面需要3分钟,再翻过来烙另一面也要3分钟,3+3=6,所以烙熟1张饼最少需要6分钟。
师:如果要烙2张饼呢,最少需要几分钟?
生1:1张饼要6分钟,烙2张饼就要12分钟。
生2:烙2张饼只要6分钟。可以两张饼一起烙,先烙正面,再烙反面。
师:大家认为哪种方法更好?为什么?(节省时间)它为什么能节省时间?
生:2张饼同时烙。
师小结:看来这就是烙两张饼的最优方法,就是2张饼同时烙。
3、动手操作,探究烙3张饼的最优方法。
师:烙3张饼,最少需要几分钟?看来大家有有不同的想法,请你用学具摆一摆,试一试怎样烙最节省时间。
(1)学生尝试烙饼。(教师巡视并做个别指导)
(2)汇报交流。(预计有18分钟、12分钟、9分钟)
预设:
①一张一张烙:烙一张要:3+3=6(分钟)烙三张要:6×3=18(分钟)
②先同时烙两张,再单独烙第三张:同时烙两张6分钟,烙一张也要6分钟,6+6=12(分钟)师:它的实验证明了自己的猜测:烙3张饼需要12分钟,比起一张一张烙,的确节省了时间,为什么?(第1次2张同时烙)
师:还有哪些同学是跟他一样的?动脑筋想,有没有更短的时间?
③饼1和饼2先烙正面,再烙饼1的反面和饼3的正面,最后烙饼2和饼3的反面,共烙了3次即3+3+3=9(分钟)(请学生上来演示,你说烙饼过程,我们全班帮你记着时间。再请一名学生演示,边演示教师边板书)
(3)同桌合作,再次摆一摆,体验“9分钟的烙法”。
(4)集体交流,对比择优。
师:都是烙3张饼,为什么第二种方法比第一种能节省3分钟时间?
生:这种烙法锅里始终有2张饼,而其他方法有时候锅里只有1张饼。
小结:看来和烙2张饼的最优方法一样,也是保证每次锅里都有两张饼,所用的时间就最少,这就是烙3张饼的最优方法。
你想给这种烙饼方法取个名字吗?我们通过改变烙饼的顺序,保证每次锅里都有2张饼,所用的时间最少,这就是烙3张饼的最优方法,我们把它叫做“交替烙法”。板书:交替烙法
(设计意图:烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力)
4、总结方法,探究规律
(1)脱离学具,思考烙4张饼的最优方法
师:如果要烙4张饼,怎样烙才能最节省时间?
师:这种方法也就是2张2张地烙,每次都保证锅里有2张饼,没让它闲着,所以最节省时间。看来烙4张饼的问题可以转化成烙2张饼的问题,这样就把新的问题转化成我们已经解决了的问题。
(2)烙5张饼(师引导:想想怎样把新问题转化成我们已经解决的问题)
生:先烙2个,再烙3个。
师:烙2个需要几分钟(6分钟)烙3个需要几分钟(9分钟),一共需要几分钟?(15分钟)
(3)烙6-10张饼,探讨烙饼的次数与饼的分组方案间的规律。
师:烙6张饼、7张饼、8张饼呢,最快需要多少时间?请与同桌合作探究,并把你们的结果填在表里。
(4)发现规律。
师:通过前面的烙饼活动,你有什么发现?(引导学生从烙饼的方法和表中的数据两方面寻找规律)师:烙饼的张数是双数时,怎样烙最节省时间?烙饼的张数是单数呢?
烙饼所用的最少时间与饼的张数有什么关系?
生1:我发现当烙饼的张数是双数时,2张2张烙最省时间;当烙饼的张数是单数时(除1张饼外),先2张2张烙,剩下的3张按烙3张饼的最佳方案烙,这样所用的时间最少。(全班集体评价)生2:我从表中发现,除1张饼外,烙饼的张数×3=最短时间。(板书:时间=饼数×3)
师:“3”是什么?
生:“3”是烙一面需要3分钟。
师:如果烙100张饼需要多长时间?如果烙一面的时间不是3分钟,而是4分钟呢?5分钟呢?这个算式哪里要改一改?这里的3、4、5代表的是什么?
生:烙一面的时间。(板书:时间=饼数×烙一面的时间)
(设计意图:通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用)
三、全课总结
今天我们研究出烙饼的最优方法,它源自我国的大数学家华罗庚爷爷提出的“优选法”,它教会我们要合理地安排好自己的学习和生活,节约资源,提高效率,做一个珍惜时间的人。
5、《烙饼问题》教学设计一等奖
教学内容:人教版四年级上册数学第105页例2。
教学目标:
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
教学重、难点:
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
教具学具准备:
多媒体课件、圆形纸片若干。
教学过程:
一、直奔主题
同学们,今天我们一起来研究一个有趣的数学问题。
二、探究新知
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
[设计意图:在烙三张饼前铺垫烙一张饼和两张饼的方法,利于学生由易到难由浅入深地思考问题,为新知的探究奠定基础。]
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
[设计意图:让学生对比烙1张饼和烙2张饼的最短时间,旨在让学生明白“同时烙”的优势在于节省时间,从而为下一步的继续探究提供思维支撑。]
5、研究烙三张饼所需要的时间
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
[设计意图:学生先自主尝试烙,不但给学生提供了思维的时间和空间,而且利于学生暴露自已的真实想法,为教师进一步调控课堂提供了依据。]
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
[设计意图:三张饼的最佳烙法是本节课的重点。重点问题重点处理,学生有了透彻清晰的理解才能为接下来的学习扫清障碍。]
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
[设计意图:授人以鱼不如授人以渔,有了前面的学习方法的“扶”,四——七张饼的烙法教师完全放手让学生去尝试交流,有助于培养学生的学习能力和独立解决问题的能力。]
7、寻找规律
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题
师:这就是我们这节课要研究的烙饼问题(板书课题)
在学生解释图意的基础上用投影整理出以下三条:
生1:每次最多只能同时放两张饼。师:什么意思?
生2:一个饼的两面都要烙,烙一面需要花3分钟。
2.思考烙2个饼
那两张饼你准备怎么烙?请用手势说明一下。很好,在学数学时可以借助我们的身体和动作,来帮助我们思考。还有别的想法吗?
这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)
二、合作实践,探究新知
实践活动(一):探究烙3个饼(13分钟)
(1)小组合作,摆一摆。
师:同学们,请你来当大厨,你想怎样烙?
先独立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当平底锅烙一烙。开始。(师巡视)
(2)说一说。指名汇报本组是怎样安排的。为了让大家看得清楚,我把每次烙每张饼的正反面的情景都展现出来。 预设
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
(最优方法没有出现)
师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?
生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。
师:想一想,会不会还有更好的方法呢?
启发学生发现:让锅里每次都烙2张饼。
同桌合作探究最优烙法,汇报(交替烙)。
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
3.用三张饼的最优方法烙。(交替烙)
师:谁还能再说一次这种烙法?(课件演示)
你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)
但是我想采访一下大家:对这三种方法,你有什么看法?
师小结:看来,充分利用锅的空间,不留空位,就能节省时间。
其他同学也能像这样用9分钟烙好3张饼吗?
同桌两人合作,用这种方法再试一试。师巡视
理解并掌握烙3张饼的最优方法。
小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)
实践活动(二):探究烙4、5张饼(6分钟)
这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。
1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)
师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。
2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。
师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)
实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)
1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。
2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?
那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需
要多长时间?怎么烙?真是反应迅速的小机灵!
三、结合生活,知识拓展。(2分钟)
刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!
四、课堂总结(4分钟)
师:同学们,这节课你有什么体会和收获?
小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。
希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!
6、《烙饼问题》教学反思
临近期末,“数学广角”的知识成了这段时间的教学重点。本册(四年级上册)的“数学广角”包括了:烙饼问题、合理安排时间(统筹方法)、排队求等候时间总和、田忌赛马(对策论)这四个内容。看看课时安排,只有四课时,书上的内容,也好像很浅显。可是实际教学当中,要把各种方法在课堂中落实下去,知道过程,掌握方法,灵活运用,这其中的容量是很大的。下面就“烙饼问题”谈谈自己的想法:
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题向学生渗透简单的优化思想,让学生从中体会统筹思想在日常生活中的作用,感受数学的魅力。本节课我立足于培养学生良好的思维能力,从学生的生活经验和原有的基础知识出发,创设生活情境,以“烙饼”为主题,让学生借助学具操作,围绕怎样烙饼,亲身经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法。在本课教学中,我突出了以下几点:
本节课我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼”展开教学,设计了烙1张、2张、3张……单张,双张饼的探究过程。
在本课的教学中,我以烙3张饼作为教学突破点,首先引导学生观察、理解情境图里的内容,理解了问题情境和需要解决的问题后,让学生独立思考,再分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间烙完。学生可能会有不同的方案,我把各小组汇报的不同方案在黑板上展示出来,让大家来比较各种方案的优劣。这一环节是让学生形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
然后,我又分别让学生讨论烙4——9张饼的最佳方法,从而总结得到规律:双数张饼就2张2张地烙;单数张饼就用最优方法先烙3张,然后再2张2张的烙,或者先2张2张地烙,剩下3张的时候用最优方法烙。至于求“最少要用多长时间”这个问题,用次数×每次所用时间即可。
相信学生,放手让学生探索解决问题的方法,是本节课的成功之处。学生通过动手操作,探索尝试,再进行比较,既有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。
7、《烙饼问题》教学反思
1、创造多种形式,突破重、难点。为了突破难点,很短的时间让学生了解烙一张、两张饼至少需要的时间,为探究三张饼的最佳烙法作好铺垫。在探究三张饼的最佳烙法时,学生首先想到的是要12分钟,我就问:“还有更省时的方案吗?”激发学生的求知欲,迫使他们重新思考和操作。于是出现了两种方法:第一种先烙烙两张,再烙一张,学生提出异议,并让他进行板演,出现我们预设的第二种方法:三张轮换烙。
并通过多媒体课件直观展示两种轮换烙的过程,直观比较出第一种要烙4次,而第二种只需烙三次,节省3分钟,又通过表格的填写加深三张轮换烙的方法。为什么第二种三张轮换烙方法会比第一种方法节省3分钟呢,通过再现直观图,学生得出:保证每次锅子里总有两张饼呀。并培养空间想象能力,从而达到突破难点的目的。为了突出“如何用优化思想解决生活中的问题”这一教学重点,我是这样做的:首先,在探究烙两张饼至少需要几分钟时,有的`学生说要12分钟,有的学生说6分钟,从而引发分歧,激起学生争辩及思维的碰撞。再通过各自陈述理由后对比发现:锅子里同时烙两张饼更省时省资源,让学生初步感受到从多种方案中寻找最优方案的重要性。其次,在探究三张饼至少需要几分钟的时候,有的学生说要12分钟,有的学生说要9分钟。再次引导学生对比发现:两张同时烙法操作起来简单,三张轮换烙法虽然复杂,但更省时,也符合题意。进一步加深了学生对“选择优化思想解决问题”重要性的印象。另外,在探究6张饼的最佳烙法时,也许有的学生会选择用同时烙法烙三次,有的学生会选择用三张轮换烙法烙两次。虽然两种方案都是需要18分钟,但通过引导学生对比发现,用同时烙法烙三回操作起来更简便。让学生再次感受到在时间相同的情况下,还要选择操作过程的最优化。
2、解放学生的手,让学生操作实践。《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。如,我让学生明确要求以圆形纸片替代饼,与家人或小伙伴进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。我要求用学具同桌模拟烙饼,一人烙饼,一人记录。有多种方案的请轮流记录。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
3、解放学生口,让学生畅所欲言。上课时,我让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点)时,由于有小精灵的要求“怎样才能尽快吃上饼”这句话,所以在实际的课堂里,虽然出现像教材中提到的烙一张饼要6分时间,烙3张饼要18分这一方案,但很快被孩子们自己给否定了,因为四年级学生能充分利用“每次能烙两张饼”这个条件。
4、给孩子一个发展的课堂。教材在最后安排了“如果要烙的是4张饼,5张饼……9张饼呢?”你发现了什么“。在课堂中,学生能根据表格中的烙饼方法渗透数学转化的思想,把多张饼都转化成两张同时烙或三张轮换烙,还有的孩子还从表格中发现双数饼了两张两张的烙,单数饼先两张两张烙,最后三张轮换烙的规律;还根据表格中的烙饼张数和烙饼的时间之间的关系得出。”饼数×3=烙饼总时间“这一规律,使整节课得到升华,数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
8、《烙饼问题》教学反思
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕怎样烙饼,才能尽快吃上饼?展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程,整节课根据不同的教学环节我渗透了以下理念:
1、解放学生的手,让学生操作实践
“生本教育”理念强调以学生为本,充分发挥学生学习的自主性。课前我让学生进行了自主小研究,要求让学生以圆形纸片替代饼,自己先进行烙饼活动,自主探究1张饼,2张饼,3张饼的最少烙饼时间。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。并且,这一环节,紧密联系学生生活实际,从学生的生活经验和原有的知识出发,创设了生动,现实的情境让学生在兴趣盎然的活动中感受到生活中处处有数学,数学时时为我们生活服务,从而让学生更好的学习数学。
2、解放学生的口,让学生畅所欲言。
课堂上,我让学生以小组为单位,进行交流、展示、再全班交流,特别是3张饼怎么烙这个重难点,让学生说,让学生议,充分以生为本,师只在关键处引导,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。水尝水华相荡乃成涟漪;石本无火,相击而发灵光”。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。
3、让学生体会数学思想方法
“烙饼问题”,它所呈现的是优化问题,优化问题是人们经常要遇到的问题,例如,我们出门旅行就要考虑选择怎样的路线和交通工具,才能使旅行所需费用最少或者所花的时间最短;所以课堂上一定要让学生体会到这种数学思想方法。这节课中我认为学生体会的还不错。
本节中也存在很多不足,“生本理念”体现的还不够,教师放手的力度不大,特别是让学生找烙饼规律时,师讲的还是太多,此外本节中练习的也不多。
9、《烙饼问题》教学反思
本节课让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。
成功之处:
1、重视学生动手操作,在操作中发现规律。在教学中让学生利用准备的圆片进行动手操作,通过操作学生会出现如下几种情况:
(1)每次烙完一张饼,6+6+6=18(分钟)
(2)第一次烙1号和2号饼的正面,第二次烙1号和2号饼的反面,第三次烙3号饼的正面,第四次烙3号饼的.反面,3+3+3+3=12(分钟)
(3)第一次烙1号和2号饼的正面,第二次烙1号的反面和3号饼的正面,第三次烙2号和3号饼的反面,3+3+3=9(分钟)
然后教师让学生进行观察,哪种方法可以尽快吃上饼呢,为什么?小组进行交流和讨论,最后达成共识:每次总烙2张饼,别让锅空闲,这样应该最省时间。
在此基础上,教师进一步提出问题:如果要烙4张饼、5张饼、6张饼……呢?你发现了什么?由此得出:饼的张数×每面烙的时间=所需最少时间。
2、延伸拓展,启迪思维。在学生发现烙饼的规律后,教师提出当每次最多能烙3张饼,这个规律是否依然适用呢?你又会发现什么呢?学生经过思考发现只要把饼的张数×每面烙的时间=所需最少时间转化为总面数÷每次可烙的面数×每面烙的时间=所需最少时间就可以得出答案。在这个过程中“总面数÷每次可烙的面数”实际上就等于饼的张数。
不足之处:
由于对烙饼问题进行了拓展,导致练习时间不充分,学生对于烙饼问题的规律掌握不够熟练,出现了应用规律解决问题时学生对于每面烙的时间理解不到位,把每面烙的时间和烙一张饼所用的时间混淆,没有注意到必须用饼的张数乘每面烙的时间。
再教设计:
对于烙饼问题的拓展可以留给学生课后进行思考,应该留有更多的时间对本节课的问题进行针对性的训练,不留知识上的盲点。