教学设计一等奖

《有理数的乘法》教学设计一等奖

2023-06-16 10:22:19

  《有理数的乘法》教学设计一等奖

《有理数的乘法》教学设计一等奖

1、《有理数的乘法》教学设计一等奖

  作为一名教职工,时常需要准备好教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编精心整理的《有理数的乘法》教学设计,希望能够帮助到大家。

  一、教学目标

  1、知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的.理解。

  三、教学过程

  1、创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ①2×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向运动米

  2×3=

  ②-2×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向运动米

  -2×3=

  ③2×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  2×(-3)=

  ④(-2)×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  (-2)×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=()同号得

  (-)×(+)=()异号得

  (+)×(-)=()异号得

  (-)×(-)=()同号得

  ②积的绝对值等于。

  ③任何数与零相乘,积仍为。

  (3)师生共同用文字叙述有理数乘法法则。

  3、运用法则计算,巩固法则。

  (1)教师按课本P75例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

2、《有理数的乘法》教学设计一等奖

  一、学情分析:

  1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

  2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

  二、 教材分析:

  教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

  本节课的数学目标是:

  1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

  2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

  三、教学过程设计:

  本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂小结;第六环节:布置作业。

  第一环节:问题情境,引入新课

  问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

  (2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

  设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

  第二环节:探索猜想,发现结论

  问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

  (-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。

  教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

  (2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

  第三环节:验证明确结论

  问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

  一般情况,所以要加以验证和证明它的`正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

  教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

  (2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

  (3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

  第四环节:运用巩固,练习提高

  活动内容:

  (1)1。计算:

  ⑴(-4)×5;  ⑵(5-)×(-7);

  ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。计算:

  ⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

  (4)计算:

  ⑴(-8)×21÷4 ;       ⑵4÷5×(-25÷6)×(-7÷10);

  ⑶2÷3×(-5÷4);        ⑷(-24÷13)×(-16÷7)×0×4÷3;

  ⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

  教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

  (2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

  第五环节:感悟反思课堂小结

  问题

  1.本节课大家学会了什么?

  2.有理数乘法法则如何叙述?”

  3.有理数乘法法则的探索采用了什么方法?

  4.你的困惑是什么

  教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

  教后反思事项:学生小结时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

  第六环节:布置作业

  巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

  预习作业;略

  四、教学反思:

  1、设计条理的问题串,使观察、猜想、验证水到渠成

  2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

  3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

3、《有理数的乘法》教学设计一等奖

  一、学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、教学目标

  1、知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、教学过程

  1、创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  a.2×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向运动米

  2×3=

  b.-2×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向运动米

  -2×3=

  c.2×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  2×(-3)=

  d.(-2)×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向运动米

  (-2)×(-3)=

  e.被乘数是零或乘数是零,结果是人仍在原处。

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=同号得

  (-)×(+)=异号得

  (+)×(-)=异号得

  (-)×(-)=同号得

  b.积的绝对值等于。

  c.任何数与零相乘,积仍为。

  (3)师生共同用文字叙述有理数乘法法则。

  3、运用法则计算,巩固法则。

  (1)教师按课本P75例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。

  (3)学生做P76练习1(1)(3),教师评析。

  (4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。

  4、讨论对比,使学生知识系统化。

  有理数乘法有理数加法

  同号得正取相同的符号

  把绝对值相乘

  (-2)×(-3)=6把绝对值相加

  (-2)+(-3)=-5

  异号得负取绝对值大的加数的符号

  把绝对值相乘

  (-2)×3=-6(-2)+3=1

  用较大的绝对值减小的绝对值

  任何数与零得零得任何数

  5、分层作业,巩固提高。

  六、教学反思:

  本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

  【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

  探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

  为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的.最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

  学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。

  本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

4、《有理数的乘法》教学设计一等奖

  一、教学目标

  1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。

  2、能力目标:通过推导两个有理数相乘法则的过程,培养归纳总结的能力,提高由特殊到一般的能力

  3、情感目标:通过小组合作,培养与他人合作的精神

  二、教学重点:经历由几组算式推导有理数乘法的法则的过程

  教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。

  三、课前准备:

  1、复习小学的乘法法则

  2、出几道小学里已经做过的两数相乘的题目,并计算。

  四、教学过程:

  (一)创设情境,引入新知

  问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)

  预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。

  (二)观察归纳,学习法则(设计说明:法则的得出分两部分)

  第一部分分类探究(说明:3组探究重点是探究1)

  探究1(师生共同活动)

  问题1、观察下面熟识的算式,你能发现什么规律?

  3×3=9

  3×2=6

  3×1=3

  3×0=0

  预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。

  这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。

  问题2、根据这个规律,你能填写下面的结论吗?

  3×(-1)=

  3×(-2)=

  3×(-3)=

  问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。

  问题4、以上两组数相乘属于正数乘正数、正数乘负数,你能类比加法法则,从符号与绝对值两方面再来观察他们存在什么规律吗?

  归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。

  阶段性学习方法小结:回想探究1的结论,我们是怎样一步步得到的?

  (让学生充分发表见解,教师适当引导,得出主要环节:观察-猜想-归纳)

  (说明:设计意图有两个,一是初一学生学法意识的形成,二是为探究2,3的学习做好引导)

  探究2(小组讨论)

  根据刚才得到的规律,你能得出下面的'结果吗?能据此总结出规律吗?

  3×3=9

  2×3=6

  1×3=3

  0×3=0

  (-1)×3=

  (-2)×3=

  (-3)×3=

  (选一组代表上讲台分析,得出结论)

  归纳小结:

  (负数乘正数,结果为负,绝对值相乘)

  探究3(同桌交流)、

  利用上面的规律填空,并说出其中的规律。

  (-3)×3=

  (-3)×2=

  (-3)×1=

  (-3)×0=

  (-3)×(-1)=

  (-3)×(-2)=

  (-3)×(-3)=

  由学生总结得出:负数乘负数,结果为正,绝对值相乘。

  第二部分归纳总结、

  问题1:总结上面所有的情况,你能试着说出有理数乘法的法则吗?

  在师生共同交流下,得出有理数乘法法则:

  两数相乘,同号得正,异号得负,再把绝对值相乘。任何数与0相乘,都得0。

  问题2:你认为根据有理数乘法法则进行有理数乘法运算时,应按照怎样的步骤进行运算?可类比加法的运算方法。

  (说明:向学生渗透分类讨论及类比思想,再次形成学法体系)

  (三)、例题示范,学会应用

  例1:计算(1)(-3)×9=(2)8×(-1)(3)(-3)×(-4)(4)6×0

  例2:用正数、负数表示气温的变化,上升为正,下降为负。登山队攀登高山,每登高1千米,气温变化量为-6℃,攀登3千米后,气温有什么变化?

  五、归纳与总结:说说这节课你有什么收获?你还有什么问题存在?

  六、作业:课本练习题1、2、3

  板书设计

5、《有理数的乘法》教学设计一等奖

  一、内容和内容解析

  1。内容

  有理数乘法法则。

  2。内容解析

  有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。

  与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。

  基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则。

  二、目标及其解析

  1。目标

  (1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法。

  (2)能说出有理数乘法的符号法则,能用例子说明法则的合理性。

  2。目标解析

  达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果。

  达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程。

  三、教学问题诊断分析

  有理数的乘法与小学学习的乘法的区别在于负数参与了运算。本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性。上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。

  本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。

  四、教学过程设计

  问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?

  教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。

  设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。

  问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?

  3×3=9,

  3×2=6,

  3×1=3,

  3×0=0。

  追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

  如果学生仍然有困难,教师给予提示:

  (1)四个算式有什么共同点?——左边都有一个乘数3。

  (2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。

  设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。

  教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。

  追问2:根据这个规律,下面的两个积应该是什么?

  3×(—2)= ,

  3×(—3)= 。

  练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

  设计意图:让学生自主构造算式,加深对运算规律的理解。

  追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

  先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。

  设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。

  问题3观察下列算式,类比上述过程,你又能发现什么规律?

  3×3=9,

  2×3=6,

  1×3=3,

  0×3=0。

  鼓励学生模仿正数乘负数的过程,自己独立得出规律。

  设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。

  追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

  (—1)×3= ,

  (—2)×3= ,

  (—3)×3= 。

  练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

  追问2 :类比正数乘负数规律的.归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

  先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。

  追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

  设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。

  问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

  (—3)×3= ,

  (—3)×2= ,

  (—3)×1= ,

  (—3)×0= 。

  追问1:按照上述规律填空,并说说其中有什么规律?

  (—3)×(—1)= ,

  (—3)×(—2)= ,

  (—3)×(—3)= 。

  设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。

  问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

  学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。

  追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

  学生独立思考、回答。如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。

  设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。

  学生独立完成后,全班交流。

  教师说明:在(3)中,我们得到了

  =1。与以前学习过的倒数概念一样,我们说

  与—2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。

  追问:在(2)中,8和—8互为相反数。由此,你能说说如何得到一个数的相反数吗?

  设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘—1之间的关系(反过来有—8=8×(―1))。

  例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为—6°C,攀登3km后,气温有什么变化?

  设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。

  小结、布置作业

  请同学们带着下列问题回顾本节课的内容:

  (1)你能说出有理数乘法法则吗?

  (2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

  (3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。

  (4)你能举例说明符号法则“负负得正”的合理性吗?

  设计意图:引导学生从知识内容和学习过程两个方面进行小结。

  作业:教科书第30页,练习1,2,3;第37页,习题1。4第1题。

  五、目标检测设计

  1。判断下列运算结果的符号:

  (1)5×(—3);

  (2)(—3)×3;

  (3)(—2)×(—7);

  (4)(+0。5)×(+0。7)。

  设计意图:检测学生对有理数乘法的符号法则的理解。

  2计算:

6、《有理数的乘法》教学反思

  有理数的除法法则是怎么样的?前几节课采用的探索、讨论、验证的手段,是本节课继续学习的研究方法.总体上这节课我自我感觉还是良好的,现就几个方面做一下自我反思:

  1.引入新课:学生在小学时已熟知乘法与除法互为逆运算,而且也熟悉“除一个数等于乘以它的倒数的运算”的法则,所以我对新课的引入就是结合小学以及初一前面所学的有理数的乘法,用乘法引出除法,这种设计既复习了前面有理数的乘法,又合理的引出有理数的除法,这个环节中,学生不仅要回答计算结果,而且要说明理由,即叙述所依据的法则内容,另外因为题目简单,所以我应机会全部留给学习有困难的学生,让他们来回答并适当鼓励,以增强他们的自信.这点我觉得是做得比较好。

  接着让学生分组讨论,讨论完之后让一些小组派个代表说出本组讨论的结果,学生在前几节课对运算法则及运算律的语言表达过程中也积累了一些有用的数学语言,这对本节课除法法则的表达也是一个重要的语言基础.所以这个环节也顺便训练一下学生的语言表达能力,在这个环节,感觉自己唯一做得有点不足的就是;当学生讲出自己的结果,我太急于去纠正,让学生的思路跟着我的思路走,这不利于学生的表达也极容易打击学生的自信心。

  2.在讲解例题的时候,我采用这种讲法,给出三个例题,然后引导学生得出解题的步骤,这样保证大部分学生在解题的时候犯错的概率比较小,有一位老师课后给我提了一个建议,说可以先让学生练着解题,三个题目都解出来以后再引导学生得出解题的步骤,这不失为一种好方法,可以更好地提高学生总结的能力,这样通过自己的总结也可以印象更加深刻点。所以这种教学思想以后我将试着多用在教学过程中。而且还要注意道例题讲解时,要注意板书规范,体现除法法则的应用步骤。要一边板书,一边讲述法则的内容,可不要求书写每一步的依据,但应做到心中有数。

  3.在探讨“除以一个数等于乘以这个数的倒数”这个知识点上,我通过提出两个问题来引导学生讨论从而得出。这个过程同学们的讨论还是比较激烈的,最后讨论结束后,我做得不大好的地方就是没让同学自己说出讨论的结果,没让学生自己分析两个等式左右两边的区别,而是由我自己说出来,体现不出学生的自主性,这点是以后教学中必须要注意的一个问题,在最大程度上以学生为主体,教师起到引导的作用。

  4.对于多个数相除,在讲解时,一是讲清楚多个数相除时,可按顺序依次两个数相除进行;二是要讲清楚多个数相除时,也可以类比多个数相乘确定符号的方法进行,从而转化成非负数相除的情形。在这个问题上,我讲的还是比较到位的,在开始讲解前也给足学生时间去讨论:“多个有理数相除时有几种解法?”学生讨论的还是比较激烈的,而且学生也是比较积极的说出各自的讨论结果,但是有一点不足就是在做练习的时候给学生思考的时间比较少,显得太急促了。另外我还设计一组练习题供学生巩固新知,并没有因为教科书中没有练习而忽略这个程序。

  整节课的后半部分我感觉我是讲得比较快的,主要是把下课的时间看错了,所以显得后面部分讲解的节奏明显有点快,这样学生做练习的时候出现的错误没能很好的给予纠正,这是这节课明显不足的一个地方,以后对时间的把握还得再准确一点。

  课后区教研员林日福老师提出的两个观点我觉得挺不错的,第一就是在上课之前告诉同学这节课要学的内容并且要达到的目标,这样可以使学生上课的时候有更明确的目标,第二就是在解题过程涉及到一些数学思想时可适当向学生提出来,让学生逐步认识一些有用的数学思想,比如转化思想,这节课中将除法转化为乘法便是,可以适当的提一下。上面的两个做法我想在以后的教学工作中可以适当采纳一下。

  总之,我认为数学的教学活动必须建立在学生的认识发展水平和已有的知识经验基础上,本节课正是考虑和分析到了这一事实,向学生提供了充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握有理数的除法法则,并在活动中获得了一定的数学活动经验。这一做法已在最近几节课中都有所体现,而且收到了较好的效果,所以在有理数四则运算即将结束之时,有必要对这一段的教学经验加以总结,以便于更好地进行下一单元的教学。另外,我觉得要关注学生数学学习的过程,要关注学生在数学活动中所表现出来的态度,帮助学生建立信心、展示自我,要坚持这一做法。

7、《有理数的乘法》教学反思

  在学习了有理数的加减法后,我们开始进行了乘法的学习。在两节乘法的新授课之后,我们同轨的几个老师一起挑选了20道有理数的加减混合运算计算题,给学生做了一次测验,以了解学生在前一部分的学习效果如何。测试题收上来之后,我最大的感觉就是一个字——乱。其实不管是从法则学习上、理解上还是应用上乘法都要比加法简单的多,学生们对乘法的运算也确实接受的相对较快,但是最大的问题就在于许多学生开始把加法和乘法混淆,练习做的一塌糊涂。

  其实对于加法和乘法,计算都是分两步,第一确定符号,第二计算绝对值。引进负数后,负数相对于正数确实从实际上更难理解一些,负数的乘除也更加难以解释,所以很多同学很难通过具体的意义去理解记忆。因而在练习中很多同学都出现了法则混用的情况,出错率大幅增长。

  除了法则混淆之外,省略步骤也是出错的另一主要原因。很多同学在一段时间的学习后,开始不按照要求的步骤做题,偷工减料,导致出错率增长。

  针对以上情况,我在课堂上专门将加法与乘法的法则以表格的形式进行了对比,在两种运算下符号要怎样确定,绝对值又是怎样计算,通过对比让学生更加清楚的了解两者的差异,去对比记忆。并且再次对解题步骤进行了要求。在进行讲解和强调后,从练习和作业的情况来看,出错率明显降低了很多。

  通过这一阶段的教学,自己发现无论是在组织课堂方面,还是在教学难点的突破上,以及在时间分配上,都感到有所欠缺。现将今后的改进措施总结如下:

  首先,认识到台上一分钟,台下十年功,要想尽最大可能的发挥出课堂45分钟的效益,需要从许多方面去准备,去思考,比如对教学重点和难点的突破,对课堂的组织对突发事件的应对以及对学生实际情况的了解等等。要想上好一节课需要付出很多的精力。复习课并不是单纯的让学生去重复练习,更重要的是使学生在巩固基础的前提下,分析问题解决问题的能力得到提高。

  其次要站在更高的角度去认识教材,站在平等的角度去对待学生。认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的表面,知其义而不知其理,这样只能是依样画瓢。再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题。我们做教师的往往认为一道题很简单,学生为什么不会,不理解,殊不知是在用十几年甚至是几十年的经验去和刚开始学习的儿童去比较。

  教学工作是一项需要不断探索研究的事情,需要一如既往的热情和不断进取的上进心,在以后的工作中要不断总结经验教训,跟上不断发展变化的教育新形势。

8、《有理数的乘法》教学反思

  有理数的乘法是有理数运算的一个非常重要的内容,“有理数乘法”的教学,在性质上属于定义教学,历来是一个难点内容,教师难教,学生难理解。有一个比较省事的做法是,略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则。但新课程提倡让学生体验知识的形成过程。本节课尽量考虑在有利于基础知识、基础技能的掌握和学生的创新能力的培养,能最大限度地使教学的设计过程面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。

  反思这节课,较好的地方在于:

  1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。首先,由温度的变化问题,引导学生自己列出乘法算式,使学生体会到当数的范围扩充到有理数后,学习有理数的乘法运算是解决实际问题的需要,进而体会到数学知识与实际生活的密切联系。

  2、整个探究新知的过程,体现了以学生为主体的理念。首先,引导学生根据有理数的分类,考虑有理数的乘法可能出现的情况,适当的向学生渗透了分类讨论的思想;接着对于学生归纳总结的六种情况,逐一的进行了讨论、研究,让学生自己探究每种情况如何进行运算,并用自己的语言进行归纳总结;最后,再现学生叙述的每种情况,进而将六种情况归结为三种:即同号、异号及与零相乘,放手让学生自己总结有理数的乘法法则,培养了学生的归纳、总结及语言的表达能力。

  3、练习设计,让学生体验到成功的乐趣。整节课内容安排紧凑,由浅入深,循序渐进地突破难点。根据初一学生的思维特点和年龄特征,设计了“创设情境,引入新课”、“新知探究”、“巩固新知”、“总结归纳”、等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。

  尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。

  1、课堂引入花时间太多。对于正数乘负数、负数乘负数、负数乘正数三种情况的探究,太浪费时间,直接从温度变化的实例引出可以节省一些时间用于合作学习的环节。

  2、课堂时间分配的不合理,因为导入新知的过程太过详细,从而没有了练习的时间,整个教学过程显得不完整。

  3、整堂课感觉教师启发引导的较多,给学生自主探索思考的空间较少,不利于学生思维的发展,不利于学生主体作用的发挥。

  在今后的教学中,自己会克服不足,发扬优点,使自己的教学逐渐趋于完善。

相关文章

推荐文章