班主任工作总结

高二上学期数学知识点总结11篇

2023-06-22 09:30:04

  高二上学期数学知识点总结11篇

高二上学期数学知识点总结11篇

高二上学期数学知识点总结第1篇

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。那么总结应该包括什么内容呢?下面是小编整理的初二下学期数学知识点总结,希望对大家有所帮助。

  1、直角三角形斜边上的中线等于斜边上的一半。

  2、四边形的外角和等于360°。

  3、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。

  4、同角或等角的余角相等。

  5、过一点有且只有一条直线和已知直线垂直。

  6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

  7、如果两条直线都和第三条直线平行,这两条直线也互相平行。

  8、同位角相等,两直线平行。

  9、同旁内角互补,两直线平行。

  10、两直线平行,同位角相等。

  二次根式知识点

  (一)一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。

  (二)二次根式的加减法

  1.同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。

  2.合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。

  3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。

  (三)二次根式的乘除法

  二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式。

  一次函数知识点

  (一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

  (二)一次函数的图像及性质

  1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

  3.正比例函数的图像总是过原点。

  4.k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  初二数学下册函数知识点归纳

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  八年级数学下册知识点

  第十六章分式

  一.知识框架

  二.知识概念

  1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

  2.分式有意义的条件:分母不等于0

  3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

  4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

  分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A_C/B_C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)

  5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

  6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

  2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

  3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b _ c/d=ac/bd

  4.分式的除法法则:(1).两个分式相除,把除式的'分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

  (2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_d/c

  7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

  8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

  分式和分数有着许多相似点。教师在讲授本章内容时,可以对比分数的特点及性质,让学生自主学习。重点在于分式方程解实际应用问题。

  第十七章反比例函数

  一.知识框架

  二.知识概念

  1.反比例函数:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

  2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点

  3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

  在学习反比例函数时,教师可让学生对比之前所学习的一次函数启发学生进行对比性学习。在做题时,培养和养成数形结合的思想。

  第十八章勾股定理

  一.知识框架

  二知识概念

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  2.定理:经过证明被确认正确的命题叫做定理。

  3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  勾股定理是直角三角形具备的重要性质。本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。可以通过自主学习的发展体验获取数学知识的感受

  第十九章四边形

  一.知识框架

  二.知识概念

  1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

  3.平行四边形的判定1.两组对边分别相等的四边形是平行四边形

  2.对角线互相平分的四边形是平行四边形;

  3.两组对角分别相等的四边形是平行四边形;

  4.一组对边平行且相等的四边形是平行四边形。

  4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  5.直角三角形斜边上的中线等于斜边的一半。

  6.矩形的定义:有一个角是直角的平行四边形。

  7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

  8.矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。

  2.对角线相等的平行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  9.菱形的定义:邻边相等的平行四边形。

  10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

  2.对角线互相垂直的平行四边形是菱形。

  3.四条边相等的四边形是菱形。

  12.S菱形=1/2×ab(a、b为两条对角线)

  13.正方形定义:一个角是直角的菱形或邻边相等的矩形。

  14.正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  15.正方形判定定理:1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

  16.梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  17.直角梯形的定义:有一个角是直角的梯形

  18.等腰梯形的定义:两腰相等的梯形。

  19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  本章内容是对平面上四边形的分类及性质上的研究,要求学生在学习过程中多动手多动脑,把自己的发现和知识带入做题中。因此教师在教学时可以多鼓励学生自己总结四边形的特点,这样有利于学生对知识的把握。

  第二十章数据的分析

  一.知识框架

  二.知识概念

  1.加权平均数:加权平均数的计算公式。权的理解:反映了某个数据在整个数据中的重要程度。

  2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  3.众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  4.极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  本章内容要求学生在经历数据的收集、整理、分析过程中发展学生的统计意识和数据处理的方法与能力。在教学过程中,以生活实例为主,让学生体会到数据在生活中的重要性。

高二上学期数学知识点总结第2篇

  1.1柱、锥、台、球的结构特征

  1.2空间几何体的三视图和直观图

  11三视图:

  正视图:从前往后

  侧视图:从左往右

  俯视图:从上往下

  22画三视图的原则:

  长对齐、高对齐、宽相等

  33直观图:斜二测画法

  44斜二测画法的步骤:

  (1).平行于坐标轴的线依然平行于坐标轴;

  (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

  (3).画法要写好。

  5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

  1.3空间几何体的表面积与体积

  (一)空间几何体的表面积

  1棱柱、棱锥的表面积:各个面面积之和

  2圆柱的表面积3圆锥的表面积

  4圆台的表面积

  5球的表面积

  (二)空间几何体的体积

  1柱体的体积

  2锥体的体积

  3台体的体积

  4球体的体积

  高二数学必修二知识点:直线与平面的位置关系

  2.1空间点、直线、平面之间的位置关系

  2.1.1

  1平面含义:平面是无限延展的

  2平面的画法及表示

  (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)

  (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

  3三个公理:

  (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

  符号表示为

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判断直线是否在平面内

  (2)公理2:过不在一条直线上的三点,有且只有一个平面。

  符号表示为:A、B、C三点不共线=>有且只有一个平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:确定一个平面的依据。

  (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  符号表示为:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定两个平面是否相交的依据

  2.1.2空间中直线与直线之间的位置关系

  1空间的两条直线有如下三种关系:

  共面直线

  相交直线:同一平面内,有且只有一个公共点;

  平行直线:同一平面内,没有公共点;

  异面直线:不同在任何一个平面内,没有公共点。

  2公理4:平行于同一条直线的两条直线互相平行。

  符号表示为:设a、b、c是三条直线

  a∥b

  c∥b

  强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

  公理4作用:判断空间两条直线平行的依据。

  3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

  4注意点:

  ①a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

  ②两条异面直线所成的角θ∈(0,);

  ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

  ④两条直线互相垂直,有共面垂直与异面垂直两种情形;

  ⑤计算中,通常把两条异面直线所成的.角转化为两条相交直线所成的角。

  2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系

  1、直线与平面有三种位置关系:

  (1)直线在平面内——有无数个公共点

  (2)直线与平面相交——有且只有一个公共点

  (3)直线在平面平行——没有公共点

  指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示

  aαa∩α=Aa∥α

  2.2.直线、平面平行的判定及其性质

  2.2.1直线与平面平行的判定

  1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

  简记为:线线平行,则线面平行。

  符号表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面与平面平行的判定

  1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

  符号表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判断两平面平行的方法有三种:

  (1)用定义;

  (2)判定定理;

  (3)垂直于同一条直线的两个平面平行。

  2.2.3—2.2.4直线与平面、平面与平面平行的性质

  1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

  简记为:线面平行则线线平行。

  符号表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用该定理可解决直线间的平行问题。

  2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

  符号表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面与平面平行得出直线与直线平行

  2.3直线、平面垂直的判定及其性质

  2.3.1直线与平面垂直的判定

  1、定义

  如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。

  2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

  注意点:a)定理中的“两条相交直线”这一条件不可忽视;

  b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

  2.3.2平面与平面垂直的判定

  1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

  2、二面角的记法:二面角α-l-β或α-AB-β

  3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

  2.3.3—2.3.4直线与平面、平面与平面垂直的性质

  1、定理:垂直于同一个平面的两条直线平行。

  2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

高二上学期数学知识点总结第3篇

  考点一:向量的概念、向量的基本定理

  【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

  注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

  考点二:向量的运算

  【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

  【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

  考点三:定比分点

  【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

  【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

  考点四:向量与三角函数的综合问题

  【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

  【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

  考点五:平面向量与函数问题的交汇

  【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

  【命题规律】命题多以解答题为主,属中档题。

  考点六:平面向量在平面几何中的应用

  【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

  【命题规律】命题多以解答题为主,属中等偏难的试题。

高二上学期数学知识点总结第4篇

  1、圆的定义

  平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (x-a)^2+(y-b)^2=r^2

  (1)标准方程,圆心(a,b),半径为r;

  (2)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线,圆,圆心到l的距离为,则有;;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

  练习题:

  2.若圆(x-a)2+(y-b)2=r2过原点,则()

  A.a2-b2=0B.a2+b2=r2

  C.a2+b2+r2=0D.a=0,b=0

  【解析】选B.因为圆过原点,所以(0,0)满足方程,

  即(0-a)2+(0-b)2=r2,

  所以a2+b2=r2.

高二上学期数学知识点总结第5篇

  等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

高二上学期数学知识点总结第6篇

  一、直线与圆:

  1、直线的倾斜角的范围是

  在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(_1,y1),(_2,y2)的直线的斜率k=(y2-y1)/(_2-_1),另外切线的斜率用求导的.方法。

  3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

  ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条平行线与的距离是

  6、圆的标准方程:.⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

  9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

  二、圆锥曲线方程:

  1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

  2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

  3、抛物线:①方程y2=2p_注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线_=-;③焦半径;焦点弦=_1+_2+p;

  4、直线被圆锥曲线截得的弦长公式:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴O_、Oy。画直观图时,把它画成对应轴o'_'、o'y'、使∠_'o'y'=45°(或135°);

  (2)平行于_轴的线段长不变,平行于y轴的线段长减半.

  (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的角

  四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义:在点处的导数记作.

  2.导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(_0)表示过曲线y=f(_)上P(_0,f(_0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

  3、逻辑联结词:

  ⑴且(and):命题形式pq;pqpqpqp

  ⑵或(or):命题形式pq;真真真真假

  ⑶非(not):命题形式p.真假假真假

  假真假真真

  假假假假真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

高二上学期数学知识点总结第7篇

  1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.

  2、倾斜角α的取值范围:0°≤α<180°.

  当直线l与x轴垂直时,α=90°.

  3、直线的斜率:

  一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα

  ⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;

  ⑵当直线l与x轴垂直时,α=90°,k不存在.

  由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

  4、直线的斜率公式:

  给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

  斜率公式:

  3.1.2两条直线的平行与垂直

  1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

  注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2

  2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

  3.2.1直线的点斜式方程

  1、直线的点斜式方程:直线经过点且斜率为

  2、、直线的斜截式方程:已知直线的斜率为

  3.2.2直线的两点式方程

  1、直线的两点式方程:已知两点

  2、直线的截距式方程:已知直线

  3.2.3直线的一般式方程

  1、直线的一般式方程:关于x、y的二元一次方程

  (A,B不同时为0)

  2、各种直线方程之间的互化。

  3.3直线的交点坐标与距离公式

  3.3.1两直线的交点坐标

  1、给出例题:两直线交点坐标

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程组

  得x=-2,y=2

  所以L1与L2的交点坐标为M(-2,2)

  3.3.2两点间距离

  两点间的距离公式

  3.3.3点到直线的距离公式

  1.点到直线距离公式:

  2、两平行线间的距离公式:

高二上学期数学知识点总结第8篇

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  然说难度比较大,我建议考生,采取分部得分整个试

高二上学期数学知识点总结第9篇

  一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.

  二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.

  三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.

  四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式 7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.

  五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.

  六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.

  七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.

  八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.

  十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式 4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.

  十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)

  十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.

  十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.

  十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的最大值和最小值.

  十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。

高二上学期数学知识点总结第10篇

  一、直线与圆:

  1、直线的倾斜角 的范围是

  在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,

  ⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为

  4、 , ,① ∥ , ; ② .

  直线 与直线 的位置关系:

  (1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0

  5、点 到直线 的距离公式 ;

  两条平行线 与 的距离是

  6、圆的标准方程: .⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离  ② 相切  ③ 相交

  9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长

  二、圆锥曲线方程:

  1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;

  2、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线 或 c2=a2+b2

  3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .

  2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即

  3、模的'计算:|a|= . 算模可以先算向量的平方

  4、向量的运算过程中完全平方公式等照样适用:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S= ;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行 线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直 线面垂直 面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的角

  四、导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义: 在点 处的导数记作 .

  2. 导数的几何物理意义:曲线 在点 处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

  3.常见函数的导数公式: ① ;② ;③ ;

  ⑤ ;⑥ ;⑦ ;⑧ 。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

  注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

  (2)求极值的步骤:

  ①求导数 ;

  ②求方程 的根;

  ③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

  (3)求可导函数最大值与最小值的步骤:

  ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、逻辑联结词:

  ⑴且(and) :命题形式 p q; p q p q p q p

  ⑵或(or):命题形式 p q; 真 真 真 真 假

  ⑶非(not):命题形式 p . 真 假 假 真 假

  假 真 假 真 真

  假 假 假 假 真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。

  全称命题p: ; 全称命题p的否定 p:。

  特称命题p: ; 特称命题p的否定 p:

高二上学期数学知识点总结第11篇

  导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义: 在点 处的导数记作 .

  2. 导数的几何物理意义:曲线 在点 处切线的斜率

  ①=f/(x0)表示过曲线=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。

  3.常见函数的导数公式: ① ;② ;③ ;

  ⑤ ;⑥ ;⑦ ;⑧ 。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;

  注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。

  (2)求极值的步骤:

  ①求导数 ;

  ②求方程 的根;

  ③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;

  (3)求可导函数最大值与最小值的步骤:

  ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

  导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!

  导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δ与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

  不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

  对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

  设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δ=f(x0+Δx)-f(x0);如果Δ与Δx之比当Δx→0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f'(x0),也记作'│x=x0或d/dx│x=x0

相关文章

推荐文章