班主任工作总结

高中数学必修知识点总结7篇

2023-06-28 18:12:01

  高中数学必修知识点总结7篇

高中数学必修知识点总结7篇

高中数学必修知识点总结第1篇

  1、(1)做有毒气体的实验时,应在通风厨中进行,并注意对尾气进行适当处理(吸收或点燃等)。进行易燃易爆气体的实验时应注意验纯,尾气应燃烧掉或作适当处理。

  (2)烫伤宜找医生处理。

  (3)浓酸撒在实验台上,先用Na2CO3 (或NaHCO3)中和,后用水冲擦干净。浓酸沾在皮肤上,宜先用干抹布拭去,再用水冲净。浓酸溅在眼中应先用稀NaHCO3溶液淋洗,然后请医生处理。

  (4)浓碱撒在实验台上,先用稀醋酸中和,然后用水冲擦干净。浓碱沾在皮肤上,宜先用大量水冲洗,再涂上硼酸溶液。浓碱溅在眼中,用水洗净后再用硼酸溶液淋洗。

  (5)钠、磷等失火宜用沙土扑盖。

  (6)酒精及其他易燃有机物小面积失火,应迅速用湿抹布扑盖。

高中数学必修知识点总结第2篇

  一、硅元素:无机非金属材料中的主角,在地壳中含量26.3%,次于氧。是一种亲氧元

  素,以熔点很高的氧化物及硅酸盐形式存在于岩石、沙子和土壤中,占地壳质量90%以上。位于第3周期,第ⅣA族碳的下方。

  Si对比C

  最外层有4个电子,主要形成四价的化合物。

  二、二氧化硅(SiO2)

  天然存在的二氧化硅称为硅石,包括结晶形和无定形。石英是常见的结晶形二氧化硅,其中无色透明的就是水晶,具有彩色环带状或层状的是玛瑙。二氧化硅晶体为立体网状结构,基本单元是[SiO4],因此有良好的物理和化学性质被广泛应用。(玛瑙饰物,石英坩埚,光导纤维)

  物理:熔点高、硬度大、不溶于水、洁净的SiO2无色透光性好

  化学:化学稳定性好、除HF外一般不与其他酸反应,可以与强碱(NaOH)反应,是酸性氧化物,在一定的条件下能与碱性氧化物反应

  SiO2+4HF == SiF4 ↑+2H2O

  SiO2+CaO ===(高温) CaSiO3

  SiO2+2NaOH == Na2SiO3+H2O

  不能用玻璃瓶装HF,装碱性溶液的试剂瓶应用木塞或胶塞。

  三、硅酸(H2SiO3)

  酸性很弱(弱于碳酸)溶解度很小,由于SiO2不溶于水,硅酸应用可溶性硅酸盐和其他酸性比硅酸强的酸反应制得。

  Na2SiO3+2HCl == H2SiO3↓+2NaCl

  硅胶多孔疏松,可作干燥剂,催化剂的载体。

  四、硅酸盐

  硅酸盐是由硅、氧、金属元素组成的化合物的总称,分布广,结构复杂化学性质稳定。一般不溶于水。(Na2SiO3 、K2SiO3除外)最典型的代表是硅酸钠Na2SiO3:可溶,其水溶液称作水玻璃和泡花碱,可作肥皂填料、木材防火剂和黏胶剂。常用硅酸盐产品:玻璃、陶瓷、水泥

  五、硅单质

  与碳相似,有晶体和无定形两种。晶体硅结构类似于金刚石,有金属光泽的灰黑色固体,熔点高(1410℃),硬度大,较脆,常温下化学性质不活泼。是良好的半导体,应用:半导体晶体管及芯片、光电池、

  六、氯气

  物理性质:黄绿色气体,有刺激性气味、可溶于水、加压和降温条件下可变为液态(液氯)和固态。

  制法:MnO2+4HCl (浓) MnCl2+2H2O+Cl2

  闻法:用手在瓶口轻轻扇动,使少量氯气进入鼻孔。

  化学性质:很活泼,有毒,有氧化性,能与大多数金属化合生成金属氯化物(盐)。也能与非金属反应:

  2Na+Cl2 ===(点燃) 2NaCl 2Fe+3Cl2===(点燃) 2FeCl3 Cu+Cl2===(点燃) CuCl2

  Cl2+H2 ===(点燃) 2HCl现象:发出苍白色火焰,生成大量白雾。

  燃烧不一定有氧气参加,物质并不是只有在氧气中才可以燃烧。燃烧的本质是剧烈的氧化还原反应,所有发光放热的剧烈化学反应都称为燃烧。

  Cl2的用途:

  ①自来水杀菌消毒Cl2+H2O == HCl+HClO 2HClO ===(光照) 2HCl+O2 ↑

  1体积的水溶解2体积的氯气形成的溶液为氯水,为浅黄绿色。其中次氯酸HClO有强氧化性和漂泊性,起主要的'消毒漂白作用。次氯酸有弱酸性,不稳定,光照或加热分解,因此久置氯水会失效。

  ②制漂白液、漂白粉和漂粉精

  制漂白液Cl2+2NaOH=NaCl+NaClO+H2O,其有效成分NaClO比HClO稳定多,可长期存放制漂白粉(有效氯35%)和漂粉精(充分反应有效氯70%) 2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O

  ③与有机物反应,是重要的化学工业物质。

  ④用于提纯Si、Ge、Ti等半导体和钛

  ⑤有机化工:合成塑料、橡胶、人造纤维、农药、染料和药品

高中数学必修知识点总结第3篇

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  【函数的应用】

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  1(代数法)求方程的实数根;

  2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

高中数学必修知识点总结第4篇

  一、元素周期表

  熟记等式:原子序数=核电荷数=质子数=核外电子数

  1、元素周期表的编排原则:

  ①按照原子序数递增的顺序从左到右排列;

  ②将电子层数相同的元素排成一个横行——周期;

  ③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族

  2、如何精确表示元素在周期表中的位置:

  周期序数=电子层数;主族序数=最外层电子数

  口诀:三短三长一不全;七主七副零八族

  熟记:三个短周期,第一和第七主族和零族的元素符号和名称

  3、元素金属性和非金属性判断依据:

  ①元素金属性强弱的判断依据:

  单质跟水或酸起反应置换出氢的难易;

  元素最高价氧化物的水化物——氢氧化物的'碱性强弱;置换反应。

  ②元素非金属性强弱的判断依据:

  单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;

  最高价氧化物对应的水化物的酸性强弱;置换反应。

  4、核素:具有一定数目的质子和一定数目的'中子的一种原子。

  ①质量数==质子数+中子数:A==Z+N

  ②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元素的各种同位素物理性质不同,化学性质相同)

高中数学必修知识点总结第5篇

  总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们一起来学习写总结吧。总结一般是怎么写的呢?以下是小编为大家收集的高中化学必修二知识点总结,希望对大家有所帮助。

  1、最简单的有机化合物甲烷

  氧化反应CH4(g)+2O2(g)→CO2(g)+2H2O(l)

  取代反应CH4+Cl2(g)→CH3Cl+HCl

  烷烃的通式:CnH2n+2n≤4为气体、所有1-4个碳内的烃为气体,都难溶于水,比水轻

  碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸

  同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物

  同分异构体:具有同分异构现象的化合物互称为同分异构

  同素异形体:同种元素形成不同的单质

  同位素:相同的质子数不同的中子数的同一类元素的原子

  2、来自石油和煤的两种重要化工原料

  乙烯C2H4(含不饱和的C=C双键,能使KMnO4溶液和溴的溶液褪色)

  氧化反应2C2H4+3O2→2CO2+2H2O

  加成反应CH2=CH2+Br2→CH2Br-CH2Br(先断后接,变内接为外接)

  加聚反应nCH2=CH2→[CH2-CH2]n(高分子化合物,难降解,白色污染)

  石油化工最重要的基本原料,植物生长调节剂和果实的催熟剂,

  乙烯的产量是衡量国家石油化工发展水平的标志

  苯是一种无色、有特殊气味的液体,有毒,不溶于水,良好的有机溶剂

  苯的结构特点:苯分子中的碳碳键是介于单键和双键之间的一种独特的键

  氧化反应2C6H6+15O2→12CO2+6H2O

  取代反应溴代反应+Br2→-Br+HBr

  硝化反应+HNO3→-NO2+H2O

  加成反应+3H2→

  3、生活中两种常见的有机物

  乙醇

  物理性质:无色、透明,具有特殊香味的液体,密度小于水沸点低于水,易挥发。

  良好的有机溶剂,溶解多种有机物和无机物,与水以任意比互溶,醇官能团为羟基-OH

  与金属钠的反应2CH3CH2OH+Na→2CH3CHONa+H2

  氧化反应

  完全氧化CH3CH2OH+3O2→2CO2+3H2O

  不完全氧化2CH3CH2OH+O2→2CH3CHO+2H2O(Cu作催化剂)

  乙酸CH3COOH官能团:羧基-COOH无水乙酸又称冰乙酸或冰醋酸。

  弱酸性,比碳酸强CH3COOH+NaOH→CH3COONa+H2O2CH3COOH+CaCO3→Ca(CH3COO)2+H2O+CO2↑

  酯化反应醇与酸作用生成酯和水的反应称为酯化反应。

  原理酸脱羟基醇脱氢。

  CH3COOH+C2H5OH→CH3COOC2H5+H2O

  4、基本营养物质

  糖类:是绿色植物光合作用的产物,是动植物所需能量的重要来源。又叫碳水化合物

  单糖C6H12O6葡萄糖多羟基醛CH2OH-CHOH-CHOH-CHOH-CHOH-CHO

  果糖多羟基

  双糖C12H22O11蔗糖无醛基水解生成一分子葡萄糖和一分子果糖:

  麦芽糖有醛基水解生成两分子葡萄糖

  多糖(C6H10O5)n淀粉无醛基n不同不是同分异构遇碘变蓝水解最终产物为葡萄糖

  纤维素无醛基

  油脂:比水轻(密度在之间),不溶于水。是产生能量的营养物质

  植物油C17H33-较多,不饱和液态油脂水解产物为高级脂肪酸和丙三醇(甘油),油脂在碱性条件下的水解反应叫皂化反应

  脂肪C17H35、C15H31较多固态

  蛋白质是由多种氨基酸脱水缩合而成的天然高分子化合物

  蛋白质水解产物是氨基酸,人体必需的氨基酸有8种,非必需的氨基酸有12种

  蛋白质的性质

  盐析:提纯变性:失去生理活性显色反应:加浓显灼烧:呈焦羽毛味

  误服重金属盐:服用含丰富蛋白质的新鲜牛奶或豆浆

  主要用途:组成细胞的基础物质、人类营养物质、工业上有广泛应用、酶是特殊蛋白质

  1、各类有机物的通式、及主要化学性质

  烷烃CnH2n+2仅含C—C键与卤素等发生取代反应、热分解、不与高锰酸钾、溴水、强酸强碱反应

  烯烃CnH2n含C==C键与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应、加聚反应

  炔烃CnH2n-2含C≡C键与卤素等发生加成反应、与高锰酸钾发生氧化反应、聚合反应

  苯(芳香烃)CnH2n-6与卤素等发生取代反应、与氢气等发生加成反应

  (甲苯、乙苯等苯的同系物可以与高锰酸钾发生氧化反应)

  卤代烃:CnH2n+1X

  醇:CnH2n+1OH或CnH2n+2O有机化合物的性质,主要抓官能团的特性,比如,醇类中,醇羟基的性质:1.可以与金属钠等反应产生氢气,2.可以发生消去反应,注意,羟基邻位碳原子上必须要有氢原子,3.可以被氧气催化氧化,连有羟基的碳原子上必要有氢原子。4.与羧酸发生酯化反应。5.可以与氢卤素酸发生取代反应。6.醇分子之间可以发生取代反应生成醚。

  苯酚:遇到FeCl3溶液显紫色醛:CnH2nO羧酸:CnH2nO2酯:CnH2nO2

  2、取代反应包括:卤代、硝化、卤代烃水解、酯的水解、酯化反应等;

  3、最简式相同的有机物:不论以何种比例混合,只要混和物总质量一定,完全燃烧生成的CO2、H2O及耗O2的量是不变的。恒等于单一成分该质量时产生的CO2、H2O和耗O2量。

  4、可使溴水褪色的物质:如下,但褪色的原因各自不同:

  烯、炔等不饱和烃(加成褪色)、苯酚(取代褪色)、醛(发生氧化褪色)、有机溶剂[CCl4、氯仿、溴苯(密度大于水),烃、苯、苯的同系物、酯(密度小于水)]发生了萃取而褪色。较强的无机还原剂(如SO2、KI、FeSO4等)(氧化还原反应)

  5.能使高锰酸钾酸性溶液褪色的物质有:

  (1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物

  (2)含有羟基的化合物如醇和酚类物质

  (3)含有醛基的化合物

  (4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2

  6.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物

  7、能与NaOH溶液发生反应的有机物:

  (1)酚:(2)羧酸:(3)卤代烃(水溶液:水解;醇溶液:消去)

  (4)酯:(水解,不加热反应慢,加热反应快)(5)蛋白质(水解)

  8.能发生水解反应的物质有:卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐

  9.能发生银镜反应的有:醛、甲酸、甲酸某酯、葡萄糖、麦芽糖(也可同Cu(OH)2反应)。计算时的关系式一般为:—CHO——2Ag

  注意:当银氨溶液足量时,甲醛的氧化特殊:HCHO——4Ag↓+H2CO3

  反应式为:HCHO+4[Ag(NH3)2]OH=(NH4)2CO3+4Ag↓+6NH3↑+211.

  10.常温下为气体的有机物有:

  分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。

  11.浓H2SO4、加热条件下发生的反应有:

  苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解

  12、需水浴加热的反应有:

  (1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解

  凡是在不高于100℃的条件下反应,均可用水浴加热。

  13.解推断题的特点是:抓住问题的`突破口,即抓住特征条件(即特殊性质或特征反应),如苯酚与浓溴水的反应和显色反应,醛基的氧化反应等。但有机物的特征条件不多,因此还应抓住题给的关系条件和类别条件。关系条件能告诉有机物间的联系,如A氧化为B,B氧化为C,则A、B、C必为醇、醛,羧酸类;又如烯、醇、醛、酸、酯的有机物的衍变关系,能给你一个整体概念。

  14.烯烃加成烷取代,衍生物看官能团。

  去氢加氧叫氧化,去氧加氢叫还原。

  醇类氧化变醛,醛类氧化变羧酸。

  光照卤代在侧链,催化卤代在苯环

  1.需水浴加热的反应有:

  (1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解

  (5)、酚醛树脂的制取(6)固体溶解度的测定

  凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。

  2.需用温度计的实验有:

  (1)、实验室制乙烯(170℃)(2)、蒸馏(3)、固体溶解度的测定

  (4)、乙酸乙酯的水解(70-80℃)(5)、中和热的测定

  (6)制硝基苯(50-60℃)

  〔说明〕:(1)凡需要准确控制温度者均需用温度计。(2)注意温度计水银球的位置。

  3.能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物。

  4.能发生银镜反应的物质有:

  醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质。

  5.能使高锰酸钾酸性溶液褪色的物质有:

  (1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物

  (2)含有羟基的化合物如醇和酚类物质

  (3)含有醛基的化合物

  (4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)

  6.能使溴水褪色的物质有:

  (1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)

  (2)苯酚等酚类物质(取代)

  (3)含醛基物质(氧化)

  (4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)

  (5)较强的无机还原剂(如SO2、KI、FeSO4等)(氧化)

  (6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。)

  7.密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。

  8、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃。

  9.能发生水解反应的物质有

  卤代烃、酯(油脂)、二糖、多糖、蛋白质(肽)、盐。

  10.不溶于水的有机物有:

  烃、卤代烃、酯、淀粉、纤维素

  11.常温下为气体的有机物有:

  分子中含有碳原子数小于或等于4的烃(新戊烷例外)、一氯甲烷、甲醛。

  12.浓硫酸、加热条件下发生的反应有:

  苯及苯的同系物的硝化、磺化、醇的脱水反应、酯化反应、纤维素的水解

  13.能被氧化的物质有:

  含有碳碳双键或碳碳叁键的不饱和化合物(KMnO4)、苯的同系物、醇、醛、酚。大多数有机物都可以燃烧,燃烧都是被氧气氧化。

  14.显酸性的有机物有:含有酚羟基和羧基的化合物。

  15.能使蛋白质变性的物质有:强酸、强碱、重金属盐、甲醛、苯酚、强氧化剂、浓的酒精、双氧水、碘酒、三氯乙酸等。

  16.既能与酸又能与碱反应的有机物:具有酸、碱双官能团的有机物(氨基酸、蛋白质等)

  17.能与NaOH溶液发生反应的有机物:

  (1)酚:

  (2)羧酸:

  (3)卤代烃(水溶液:水解;醇溶液:消去)

  (4)酯:(水解,不加热反应慢,加热反应快)

  (5)蛋白质(水解)

高中数学必修知识点总结第6篇

  高中化学必修一知识点总结:物质

  一、物质的分类

  把一种(或多种)物质分散在另一种(或多种)物质中所得到的体系,叫分散系.被分散的物质称作分散质(可以是气体、液体、固体),起容纳分散质作用的物质称作分散剂(可以是气体、液体、固体).溶液、胶体、浊液三种分散系的比较。

  分散质粒子大小/nm外观特征能否通过滤纸有否丁达尔效应实例:

  溶液小于1均匀、透明、稳定能没有NaCl、蔗糖溶液。

  胶体在1—100之间均匀、有的透明、较稳定能有Fe(OH)3胶体。

  浊液大于100不均匀、不透明、不稳定不能没有泥水。

  二、物质的化学变化

  1、物质之间可以发生各种各样的化学变化,依据一定的标准可以对化学变化进行分类。

  (1)根据反应物和生成物的类别以及反应前后物质种类的多少可以分为:

  A、化合反应(A+B=AB)B、分解反应(AB=A+B)。

  C、置换反应(A+BC=AC+B)。

  D、复分解反应(AB+CD=AD+CB)。

  (2)根据反应中是否有离子参加可将反应分为:

  A、离子反应:有离子参加的一类反应.主要包括复分解反应和有离子参加的氧化还原反应。

  B、分子反应(非离子反应)。

  (3)根据反应中是否有电子转移可将反应分为:

  A、氧化还原反应:反应中有电子转移(得失或偏移)的反应。

  实质:有电子转移(得失或偏移)。

  特征:反应前后元素的化合价有变化。

  B、非氧化还原反应。

  2、离子反应。

  (1)、电解质:在水溶液中或熔化状态下能导电的化合物,叫电解质.酸、碱、盐都是电解质.在水溶液中或熔化状态下都不能导电的化合物,叫非电解质。

  注意:①电解质、非电解质都是化合物,不同之处是在水溶液中或融化状态下能否导电。

  ②电解质的导电是有条件的:电解质必须在水溶液中或熔化状态下才能导电。

  ③能导电的物质并不全部是电解质:如铜、铝、石墨等。

  ④非金属氧化物(SO2、SO3、CO2)、大部分的有机物为非电解质。

  (2)、离子方程式:用实际参加反应的离子符号来表示反应的式子。它不仅表示一个具体的化学反应,而且表示同一类型的离子反应.

  复分解反应这类离子反应发生的条件是:生成沉淀、气体或水。

  书写方法:

  写:写出反应的化学方程式。

  拆:把易溶于水、易电离的物质拆写成离子形式。

  删:将不参加反应的离子从方程式两端删去。

  查:查方程式两端原子个数和电荷数是否相等。

  (3)、离子共存问题。

  所谓离子在同一溶液中能大量共存,就是指离子之间不发生任何反应;若离子之间能发生反应,则不能大量共存。

  A、结合生成难溶物质的离子不能大量共存:如Ba2+和SO42-、Ag+和Cl-、Ca2+和CO32-、Mg2+和OH-等。

  B、结合生成气体或易挥发性物质的离子不能大量共存:如H+和CO32-,HCO3-,SO32-,OH-和NH4+等。

  C、结合生成难电离物质(水)的离子不能大量共存:如H+和OH-、CH3COO-,OH-和HCO3-等。

  D、发生氧化还原反应、水解反应的离子不能大量共存(待学)。

  注意:题干中的条件:如无色溶液应排除有色离子:Fe2+、Fe3+、Cu2+、MnO4-等离子,酸性(或碱性)则应考虑所给离子组外,还有大量的`H+(或OH-).(4)离子方程式正误判断(六看)。

  (一)看反应是否符合事实:主要看反应能否进行或反应产物是否正确。

  (二)看能否写出离子方程式:纯固体之间的反应不能写离子方程式。

  (三)看化学用语是否正确:化学式、离子符号、沉淀、气体符号、等号等的书写是否符合事实。

  (四)看离子配比是否正确。

  (五)看原子个数、电荷数是否守恒。

  (六)看与量有关的反应表达式是否正确(过量、适量)。

  3、氧化还原反应中概念及其相互关系如下:

  失去电子——化合价升高——被氧化(发生氧化反应)——是还原剂(有还原性)

  得到电子——化合价降低——被还原(发生还原反应)——是氧化剂(有氧化性)

高中数学必修知识点总结第7篇

  现在数学是比较难学的,尤其是高中的知识点也是比较多的。下面大家就随小编一起去看看相关的总结吧!

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

  当 时, ;     当 时, ;  当 时, 不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式: 直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式: ,直线斜率为k,直线在y轴上的截距为b

  ③两点式: ( )直线两点 ,

  ④截矩式:

  其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

  ⑤一般式: (A,B不全为0)

  注意:各式的适用范围     特殊的方程如:

  平行于x轴的直线: (b为常数);    平行于y轴的直线: (a为常数);

  (5)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (二)垂直直线系

  垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (三)过定点的直线系

  (ⅰ)斜率为k的.直线系: ,直线过定点 ;

  (ⅱ)过两条直线 , 的交点的直线系方程为

  ( 为参数),其中直线 不在直线系中。

  (6)两直线平行与垂直

  当 , 时,;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (7)两条直线的交点

  相交

  交点坐标即方程组 的一组解。

  方程组无解 ;          方程组有无数解  与 重合

  (8)两点间距离公式:设 是平面直角坐标系中的两个点,

  则

  (9)点到直线距离公式:一点 到直线 的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程 ,圆心 ,半径为r;

  (2)一般方程

  当 时,方程表示圆,此时圆心为 ,半径为

  当 时,表示一个点;  当 时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆 ,

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当 时两圆外离,此时有公切线四条;

  当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当 时,两圆内切,连心线经过切点,只有一条公切线;

  当 时,两圆内含;   当 时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  三、立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形  ②侧面是梯形    ③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

  俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)

  (3)柱体、锥体、台体的体积公式

  (4)球体的表面积和体积公式:V =  ; S =

  4、空间点、直线、平面的位置关系

  公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  应用: 判断直线是否在平面内

  用符号语言表示公理1:

  公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:

  公理2的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

  ③它可以判断点在直线上,即证若干个点共线的重要依据。

  公理3:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理3及其推论作用:

  ①它是空间内确定平面的依据

  ②它是证明平面重合的依据

  公理4:平行于同一条直线的两条直线互相平行

  空间直线与直线之间的位置关系

  ① 异面直线定义:不同在任何一个平面内的两条直线

  ② 异面直线性质:既不平行,又不相交。

  ③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

  求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

  B、证明作出的角即为所求角

  C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

  (8)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:a α     a∩α=A    a‖α

  (9)平面与平面之间的位置关系:平行——没有公共点;α‖β

  相交——有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行 线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

  7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为 。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为 。

  ②平面的垂线与平面所成的角:规定为 。

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

  在解题时,注意挖掘题设中两个主要信息:

  (1)斜线上一点到面的垂线;

  (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

  (3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

相关文章

推荐文章