班主任工作总结

高中数学必修二知识点总结7篇

2023-07-05 13:55:02

  高中数学必修二知识点总结7篇

高中数学必修二知识点总结7篇

高中数学必修二知识点总结第1篇

  1.函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x);

  (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2.复合函数的有关问题

  (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的.对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

高中数学必修二知识点总结第2篇

  【基本初等函数】

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

高中数学必修二知识点总结第3篇

  一、元素周期表

  熟记等式:原子序数=核电荷数=质子数=核外电子数

  1、元素周期表的编排原则:

  ①按照原子序数递增的顺序从左到右排列;

  ②将电子层数相同的元素排成一个横行——周期;

  ③把最外层电子数相同的元素按电子层数递增的顺序从上到下排成纵行——族

  2、如何精确表示元素在周期表中的位置:

  周期序数=电子层数;主族序数=最外层电子数

  口诀:三短三长一不全;七主七副零八族

  熟记:三个短周期,第一和第七主族和零族的元素符号和名称

  3、元素金属性和非金属性判断依据:

  ①元素金属性强弱的判断依据:

  单质跟水或酸起反应置换出氢的难易;

  元素最高价氧化物的水化物——氢氧化物的'碱性强弱;置换反应。

  ②元素非金属性强弱的判断依据:

  单质与氢气生成气态氢化物的难易及气态氢化物的稳定性;

  最高价氧化物对应的水化物的酸性强弱;置换反应。

  4、核素:具有一定数目的质子和一定数目的'中子的一种原子。

  ①质量数==质子数+中子数:A==Z+N

  ②同位素:质子数相同而中子数不同的同一元素的不同原子,互称同位素。(同一元素的各种同位素物理性质不同,化学性质相同)

高中数学必修二知识点总结第4篇

  一、乙醇

  1、物理性质:无色有特殊香味的液体,密度比水小,与水以任意比互溶

  如何检验乙醇中是否含有水:加无水硫酸铜;如何得到无水乙醇:加生石灰,蒸馏

  2、结构:CH3CH2OH(含有官能团:羟基)

  3、化学性质

  (1)乙醇与金属钠的反应:2CH3CH2OH+2Na=2CH3CH2ONa+H2↑(取代反应)

  (2)乙醇的氧化反应

  ①乙醇的燃烧:CH3CH2OH+3O2=2CO2+3H2O

  ②乙醇的催化氧化反应2CH3CH2OH+O2=2CH3CHO+2H2O

  ③乙醇被强氧化剂氧化反应

  CH3CH2OH

  二、乙酸(俗名:醋酸)

  1、物理性质:常温下为无色有强烈刺激性气味的液体,易结成冰一样的晶体,所以纯净的乙酸又叫冰醋酸,与水、酒精以任意比互溶

  2、结构:CH3COOH(含羧基,可以看作由羰基和羟基组成)

  3、乙酸的重要化学性质

  (1)乙酸的酸性:弱酸性,但酸性比碳酸强,具有酸的通性

  ①乙酸能使紫色石蕊试液变红

  ②乙酸能与碳酸盐反应,生成二氧化碳气体

  利用乙酸的酸性,可以用乙酸来除去水垢(主要成分是CaCO3):

  2CH3COOH+CaCO3=(CH3COO)2Ca+H2O+CO2↑

  乙酸还可以与碳酸钠反应,也能生成二氧化碳气体:

  2CH3COOH+Na2CO3=2CH3COONa+H2O+CO2↑

  上述两个反应都可以证明乙酸的酸性比碳酸的酸性强。

  (2)乙酸的酯化反应

  (酸脱羟基,醇脱氢,酯化反应属于取代反应)

高中数学必修二知识点总结第5篇

  1、两对相对性状杂交试验中的有关结论

  (1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。

  (2) F1减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。

  (3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1

  注意:上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为10/16,亲本类型为6/16。

  2、常见组合问题

  (1)配子类型问题 如:AaBbCc产生的配子种类数为2x2x2=8种

  (2)基因型类型 如:AaBbCc×AaBBCc,后代基因型数为多少?

  先分解为三个分离定律:

  Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)

  Cc×Cc后代3种基因型(1CC:2Cc:1cc)所以其杂交后代有3x2x3=18种类型。

  (3)表现类型问题 如:AaBbCc×AabbCc,后代表现数为多少?

  先分解为三个分离定律:

  Aa×Aa后代2种表现型 Bb×bb后代2种表现型 Cc×Cc后代2种表现型

  所以其杂交后代有2x2x2=8种表现型。

  3、自由组合定律的实质:减I分裂后期等位基因分离,非等位基因自由组合。

高中数学必修二知识点总结第6篇

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

  (2)直线的斜率

  ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

  当 时, ; 当 时, ; 当 时, 不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式: 直线斜率k,且过点

  注意:当直线的斜率为0时,k=0,直线的方程是y=y1。

  当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式: ,直线斜率为k,直线在y轴上的截距为b

  ③两点式: ( )直线两点 ,

  ④截矩式:

  其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

  ⑤一般式: (A,B不全为0)

  注意:各式的适用范围 特殊的方程如:

  平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

  (5)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (二)垂直直线系

  垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (三)过定点的直线系

  (ⅰ)斜率为k的直线系: ,直线过定点 ;

  (ⅱ)过两条直线 , 的交点的直线系方程为

  ( 为参数),其中直线 不在直线系中。

  (6)两直线平行与垂直

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (7)两条直线的交点

  相交

  交点坐标即方程组 的一组解。

  方程组无解 ; 方程组有无数解 与 重合

  (8)两点间距离公式:设 是平面直角坐标系中的两个点,

  则

  (9)点到直线距离公式:一点 到直线 的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

高中数学必修二知识点总结第7篇

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的'几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  两个平面的位置关系:

  (1)两个平面互相平行的定义:空间两平面没有公共点

  (2)两个平面的位置关系:

  两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

  a、平行

  两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

  两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

  b、相交

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  esp.两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

  棱锥

  棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥

  棱锥的的性质:

  (1)侧棱交于一点。侧面都是三角形

  (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

  正棱锥

  正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

  正棱锥的性质:

  (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

  (3)多个特殊的直角三角形

  esp:

  a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

  b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

相关文章

推荐文章