教学计划

八年级上册数学分式方程教学计划表

2023-09-19 12:33:10

  八年级上册数学分式方程教学计划表

八年级上册数学分式方程教学计划表

1、八年级上册数学分式方程教学计划表

  在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。

  一、教学目标

  1.使学生理解分式方程的意义.

  2.使学生掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程解的检验方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

  二、教学重点和难点

  1.教学重点:

  (1)可化为一元一次方程的分式方程的解法.

  (2)分式方程转化为整式方程的.方法及其中的转化思想.

  2.教学难点:检验分式方程解的原因

  3.疑点及分析和解决办法:

  解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

  三、教学方法

  启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

  四、教学手段:

  演示法和同学练习相结合,以练习为主.

  五、教学过程

  (一)复习引入

  1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.

  使方程两边相等的未知数的值,叫做方程的解.

  (二)新知探索

  板书课题:分式方程的定义.

  分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)

  (三)作业布置

  必做:课本82页,习题3.7,A组第1、2题。

  选作:课本82页,习题3.7,A组第3题;B组第1题。

2、八年级上册数学分式方程教学计划表

  在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。

  一、教学目标

  1.使学生理解分式方程的意义.

  2.使学生掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程解的检验方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

  二、教学重点和难点

  1.教学重点:

  (1)可化为一元一次方程的分式方程的解法.

  (2)分式方程转化为整式方程的.方法及其中的转化思想.

  2.教学难点:检验分式方程解的原因

  3.疑点及分析和解决办法:

  解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

  三、教学方法

  启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

  四、教学手段:

  演示法和同学练习相结合,以练习为主.

  五、教学过程

  (一)复习引入

  1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.

  使方程两边相等的未知数的值,叫做方程的解.

  (二)新知探索

  板书课题:分式方程的定义.

  分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)

  (三)作业布置

  必做:课本82页,习题3.7,A组第1、2题。

  选作:课本82页,习题3.7,A组第3题;B组第1题。

3、七年级上册数学教学计划从算式到方程

  一、创设情境,展示问题。

  问题1:

  世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

  算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为x吨,则124=25x—1 学生独立思考,小组交流,代表发言,解释说明。

  问题1的算术解法:

  (50+70)÷2=60(千米/时) 60*5—70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。 示意图有助于分析问题。

  二、寻找关系,列出方程。

  1、对于问题1,如果设王家庄到翠湖的路程是x千米,则: 路程 时间 速度 王家庄—青山 王家庄—秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

  2、比一比:列算式与列方程有什么不同?哪一个更简便?

  3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

  学生思考回答:

  1、王家庄—青山(X—50)千米,王家庄—秀水(X+70)千米。

  2、汽车以每小时(X—50)÷3千米的速度从王家庄到青山;以每小时(X+70)÷5千米的速度从王家庄到秀水。 让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

  三、定义方程,建立模型。

  1、定义:(板书)含有未知数的等式叫做方程。

  练习一:判断下列式子是不是方程,是的打“√”,不是的打“x ”。

  (1)1+2=3 ( ) (2) 1+2x=4 ( ) (3) x+y=2 ( ) (1) x+1—3 ( ) (2) x2—1=0 ( )

  练习二:根据下列问题,设未知数并列出方程。

  (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x cm。那么依题意得到方程:_________。

  (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过x月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________。

  (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为x,那么女生数为 ,男生数为 。 由此依题意得到方程:________________。 [议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元X),未知数的指数是1次,这样的方程叫做一元一次方程。

  3、方程的解:再看刚才列出的方程:4x=24,你能观察出当x=?时,4x的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

  4、归纳分析实际问题中的`数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。

  (学生举例并完成练习一) 师生合作,根据数量关系列出方程。

  教师结合练习给出方程、一元一次方程的定义。

  (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解。 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

  学生举出方程的例子。

  (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。

  四、训练巩固,课堂小结。

  1、根据下列问题,设未数列方程,并指出是不是一元一次方程。

  (1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

  (2)甲种铅笔每枝0。3元,乙种铅笔每枝0。6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?

  (3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

  2、小结。

  本节课你学到了哪些知识?哪些方法?

  五、布置作业。

  A、必做 82页,第1、2、3、题;

  B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币?

  C、课堂评价。

  1、本节课的主要知识点是:

  2、你对列方程这节课的感受是:

  3、这节课我的困惑是:

  (1) 设跑x周。 列方程400x=3000

  (2)设甲种铅笔买了x枝,乙种铅笔买了(20—x)枝。列方程 0。3x+0。6(20—x)=9 (3)设上底为x cm,下底为(x+2)cm。列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。

4、八年级上册数学分式教学计划表

  (一)教学知识点

  1.分式的基本性质.

  2.利用分式的基本性质对分式进行“等值”变形.

  3.了解分式约分的步骤和依据,掌握分式约分的方法.

  4.使学生了解最简分式的意义,能将分式化为最简分式.

  (二)能力训练要求

  1.能类比分数的'基本性质,推测出分式的基本性质.

  2.培养学生加强事物之间的联系,提高数学运算能力.

  (三)情感与价值观要求

  通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.

  教学重点

  1.分式的基本性质.

  2.利用分式的基本性质约分.

  3.将一个分式化简为最简分式.

  教学难点

  分子、分母是多项式的约分.

  教学方法

  讨论——自主探究相结合

  教具准备

  投影片六张:

  第一张:问题串,(记作3.1.2 A);

  第二张:例2,(记作3.1.2 B);

  第三张:例3,(记作3.1.2 C);

  第四张:做一做,(记作3.1.2 D);

  第五张:议一议,(记作3.1.2 E);

  第六张:随堂练习,(记作3.1.2 F).

5、八年级上册数学分式的约分教学计划

  聪明出于勤奋,天才在于积累。尽快地掌握科学知识,迅速提高学习能力,接下来数学网为大家提供的分式的约分教学计划。

  一、教学目标

  1、类比分数约分,掌握分式约分方法,熟练进行约分

  2、经历从分数的约分到分式的约分的类比探索、归纳过程,明确分式约分的概念和依据。渗透数学中的类比数学思想.

  3、在对分式约分的过程中,由繁到简,使学生感受数学的简洁美。

  二、重点:如何进行分式约分

  难点:分子分母为多项式的分式如何约分

  三、教材分析

  本节课是冀教版八年级上册第十四章第一节的第二课时,它是分式基本性质的运用,也是后面学习分时乘除法运算的`基础,起着承上启下的的作用

  四、学情分析

  学生在小学学过了分数的约分,七年级学习了因式分解,上节课又学习了分式的基本性质,这些都是学好分式约分的基础

  五、教法学法

  自学点拨 小组合作

  六、教学过程

  一)导入

  上节课,我们利用类比思想,由分数认识了分式,由分式的基本性质通过观察、猜想、验证、归纳等环节得到了分式的基本性质,这节课,我们利用分式的基本性质继续探究新知,板书课题:14.1分式(2)约分

  【设计意图:通过简单的开场白,使学生注意力集中到课堂上,头脑中马上回想上节课的内容,而且知道了要利用分式的基本性质来探究新知,明确了学习的方向。】

  二)知识储备

  设计意图:通过第一个小题,使学生回想分数的约分方法,为类比引入分式的约分服务,第二小题的设置是为了让学生回忆因式分解的方法,如果忘记了,旁边给了小贴士,帮助回忆

  三)类比引新

  【设计意图:课上的检测很重要,但有时由于课上的突发事件而不能完成,看情况而定】

  结束语:数学的美无处不在,今天,我们学习了分式的约分,这个由繁到简的过程中,充分展示了数学的简洁美,然我们继续努力,去发现,去体会数学的美吧!

6、数学八年级上册《分式方程》的教学计划

  教学目标:

  1.知识目标:

  (1)掌握解分式方程的步骤。

  (2)理解解分式方程时验根的必要性。

  2.能力目标:

  会按照解分式方程的步骤解分式方程。

  3.情感与价值观:

  (1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

  (2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

  老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。

  重点:

  1.探索解分式方程的步骤,熟练掌握分式方程的解法。

  2.体会解分式方程验根的必要性。

  难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。

  学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

  教学准备:投影仪、各例题的标准解答过程。

  教学过程:

  一、课堂导入

  由课本第87页(即前一节课的内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

  二、新课:

  例1 解分式方程:

  (1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的`解法。

  [设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]

  [学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]

  (2)引导学生检验刚才求得的解是否是原方程的解。

  [设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]

  [学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]

  [知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。

  显然,这种书写不够规范。应分别代入两边验证为好]

  例2 解方程:

  让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

  [设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]

  [学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]

  [知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]

  例3 解方程:

  [设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]

  [学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]

  [知识链接:学生已经学习过分解因式 ___

  三、阶段小结:

  引导学生总结解分式方程的步骤:

  1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

  2.解这个整式方程。

  3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

  [设计意图:梳理一遍解题步骤,解题思路会更清晰]

  四、强化练习:

  1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。

  [设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]

  小编为大家提供的分式方程教学计划表大家仔细阅读了吗?最后祝同学们学习进步。

7、冀教版八年级上数学分式乘除教学计划表

  学习目标:

  (一)知识与技能目标

  使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.

  (二)过程与方法目标

  经历探索分式的乘除运算法则的过程,并能结合具体情境说明其合理性

  (三)情感与价值目标

  渗透类比转化的思想,让学生在学知识的同时学到方法,受到思维训练.

  学习重点:掌握分式的乘除运算。

  学习难点:分子、分母为多项式的分式乘除法运算。

  教学过程

  一、情境引入:

  你还记得分数的乘除法法则吗?你能用类似于分数的乘除法法则计算下面两题吗?

  (1) ? = (2) =

  二、探究学习:

  (1)你能说出前面两道题的计算结果吗?

  (2)你能验证分式乘.除运算法则是合理的.正确的.吗?

  (3)类比分数的乘除法则,你能从计算中总结出怎样进行分式的乘除法运算吗?

  归纳小结:

  (1)分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。 即: ab ×cd =acbd 。

  (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 即:ab ÷cd =ab ×dc =adbc 。

  (3)分式的乘方法则:分式乘方是把分子、分母各自乘方。即:( ab )n=anbn

  三、典型例题:

  归纳小结:分式的乘法运算,先把分子、分母分别相乘,然后再进行约分;进行分式除法运算,需转化为乘法运算;根据乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做显得较繁琐,因此,可根据情况先约分,再相乘,这样做有时简单易行,又不易出错.

  四、反馈练习:

  五、探究交流: (1)在夏季你是怎么挑选西瓜的呢?

  (2)你认为买大西瓜合算还是买小西瓜合算?

  七、课堂小结:

  1、分式的分子、分母都是几个因式的积的形式,约去分子、分母中相同因式的最低次幂,注意系数也要约分。

  2、当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分。

相关文章

推荐文章