教学计划

七年级上册数学《解一元一次方程》教学计划

2023-09-19 12:33:08

  七年级上册数学《解一元一次方程》教学计划

七年级上册数学《解一元一次方程》教学计划

1、七年级上册数学《解一元一次方程》教学计划

  大家把理论知识学习好的同时,也应该要学习,从学习中找到自己的不足,下面是数学网为大家整理的七年级上册数学解一元一次方程教学计划,希望对大家有帮助。

  一 、教学目标:

知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

  过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

  情感与态度:增强应用数学的意识,激发学习数学的热情。

  教学重点:从实际问题中寻找相等关系。

  教学难点:从实际问题中寻找相等关系。

  二、学习路线:

  1、阅读课本

  2、完成以下学习任务:

  (1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。求王家庄到翠湖的路程?

  ①列算式用算术方法解决这个实际问题:____________________

  ②用方程来解决这个实际问题:先画示意图:

  再找相等关系来列方程: (小组交流,讨论多种方法)

  (2)方程的概念:___________________________

  判断以下式子哪些是方程?是的画“√”;

  3+1=4; ; ; ; ; ;

  (3)根据下列问题列方程:

  ①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________

  ②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________

  ③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________

  ④课本 的三道练习题: (完成后小组批改)

  (4)一元一次方程的概念:___________________________注意:是整式方程。

  (5)什么叫做解方程:____________________________

  (6)什么叫做方程的解?__________________________

  (7)括号里的数( =3, =4, =-4)是方程 的解有____________

  归纳: 设未知数 列方程

  实际问题→———————→一元一次方程

  分析实际问题中的'数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

  三、反馈练习:

  1、(A级)下列四个式子中,是一元一次方程的是( )

  A. B. C. D.

  2、(A级)若 是关于 的方程 的解,则 _______

  3、(B级)若 是一元一次方程,则 ________

  4、(A级)“某数 的一半比这个数的相反数小7”,用方程表达这句话的意思是( )

  A. B. C. D.

  5、(B级)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为正方形,设长方形的长为 cm,则可列方程( )

  A. B. C. D.

  6、(B级)某学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/小时,货车的速度为35千米/小时(后面部分被墨水覆盖)”请你将这道作业题补充完整,并列出方程。

  7、(B级)(应用题)根据题意,列出方程。

  甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队和乙队一共比赛了10场,甲队保持了不败纪录,一共得了22分,问甲队胜了几场?

 

2、八年级上册数学分式方程教学计划表

  在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。

  一、教学目标

  1.使学生理解分式方程的意义.

  2.使学生掌握可化为一元一次方程的分式方程的一般解法.

  3.了解解分式方程解的检验方法.

  4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

  5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

  二、教学重点和难点

  1.教学重点:

  (1)可化为一元一次方程的分式方程的解法.

  (2)分式方程转化为整式方程的.方法及其中的转化思想.

  2.教学难点:检验分式方程解的原因

  3.疑点及分析和解决办法:

  解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

  三、教学方法

  启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

  四、教学手段:

  演示法和同学练习相结合,以练习为主.

  五、教学过程

  (一)复习引入

  1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.

  使方程两边相等的未知数的值,叫做方程的解.

  (二)新知探索

  板书课题:分式方程的定义.

  分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)

  (三)作业布置

  必做:课本82页,习题3.7,A组第1、2题。

  选作:课本82页,习题3.7,A组第3题;B组第1题。

3、冀教版初三上册数学用一元二次方程解决实际问题教学计划

  学习目标

  1、进一步认识建立方程模型的作用,提高数学的应用意识

  2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力

  学习重、难点

  重点:用一元二次方程解决实际问题

  难点:正确寻找等量关系

  学习过程:

  一、情境创设

  一根长22cm的铁丝。

  (1)能否围成面积是30cm2的矩形?

  (2)能否围成面积是32 cm2的矩形?并说明理由。

  二、探索活动

  分析情境问题可知:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是

  ____________。根据相等关系:矩形的长×矩形的宽=矩形的.面积,可以列出方程求解。

  思考:这根铁丝围成的矩形中,面积最大是多少?

  三、例题教学

  例 1 如图,在矩形ABCD中,AB=6,BC=12,点P从

  点A沿AB向点B 以1/s的速度移动;同时,点Q从点B沿边BC

  向点C以2/s的速度移动,问几秒后△PBQ的面积等于82?

  分析:题中含有等量关系:S△PBQ =82,只要用点P运动的时间

  来表示三角形各边的长并代入等量关系式即可得到相应的方程。

  例 2 如图,在矩形ABCD中,AB=6cm,

  BC=3cm。点P沿边AB从点A开始向点B以2cm/s

  的速度移动,点Q沿边DA从点D开始向点A以1cm/s

  的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)那么,当t为何值时,△QAP的面积等于2cm2?

  四、课堂练习

  1、P98 练习

  2、思维拓展:

  如图,有100m长的篱笆材料,要围成一矩形仓库,

  要求面积不小于600m2,在场地的北面有一堵50m的旧墙,

  有人用这个篱笆围成一个长40m,宽10m的仓库,但面积

  只有40×10m2,不合要求,问应如何设计矩形的长与宽才能符合要求呢?

  五、课堂小结

  如何正确寻找实际问题中的等量关系?

  六、作业

  后进生:P98 练习 P99 习题4.3 6 优生:P99 习题4.3 6、7、8

4、初三上册数学解一元二次方程教学计划


  教学目标

  (1)会用公式法解一元二次方程;

  (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;

  (3)渗透化归思想,领悟配方法,感受数学的内在美.

  教学重点

  知识层面:公式的推导和用公式法解一元二次方程;

  能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.

  教学难点:求根公式的推导.

  总体设计思路:

  以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.

  教学过程

  (一)以旧引新,提出问题

  解下列一元二次方程:(学生选两题做)

  (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

  (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

  然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?

  接着再改变上面每题的其中的一个系数,得到新的'四个方程:(学生不做,思考其解题过程)

  (1)3x2+4x+2=0; (2)3x2-2x+1=0;

  (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

  思考:新的四题与原题的解题过程会发生什么变化?

  设计意图: 1.复习巩固旧知识,为本节课的学习扫除障碍;

  2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.

  3、学生根据自己的情况选两题,这样做能保证运算的正确和继续学习数学的信心。

  (二)分析问题,探究本质

  由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

  进而提出下面的问题:

  既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?

  让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.

  ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可

  ax2+bx=-c 以采用学生独立尝试配方, 合

  x2+ x=- 作尝试配方或教师引导下进行

  x2+ x+ =- + 配方等各种教学形式.

  (x+ )2=

  然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2 -4ac”的重要性.

  当b2-4ac≥0时,

  (x+ )2= 注:这样变形可以避免对a正、负的讨论,

  x+ = 便于学生的理解.

  x=- 即x=

  x1= , x2=

  当b2-4ac<0时,

  方程无实数根.

  设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.

  (三)得出结论,解决问题

  由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,

  x=;

  当b2-4ac<0时,方程无实数根.

  这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的简洁美、和谐美.

  进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

  设计意图: 理解是记忆的基础。只有理解了公式才能烂熟于心,才能在题目中熟练应用,不会因记不清公式造成运算的错误。

  运用公式法解一元二次方程.(前两道教师示范,后两道学生练习)

  (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

  (3)x2+15x=-3x; (4)x2- x+ =0.

  注:( 教师在示范时多强调注意点、易错点,会减少学生做题的错误,让学生在做题中获得成功感。)

  设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤,及时总结简化运算,节约时间又提高做题的准确性。

  用公式法解一元二次方程:(比一比,看谁做得又快又对)

  (1)x2+x-6=0; (2)x2- x- =0;

  (3)3x2-6x-2=0;(4)4x2-6x=0;

  设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获,通过大量练习,熟悉公式法的步骤,训练快速准确的计算能力。

  (四)拓展运用,升华提高

  [想一想]

  清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,

  而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.

  设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.比较配方法在不同题型中的用法,

  避免以后出现运算错误。

  归纳小结, 结合上面想一想,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.

  (五) 布置作业

  ㈠必做题

  ㈡选做题:P46第12题。

  设计意图:结合学生的实际情况,可以分层布置。 适合的练习既巩固了所学提高了计算的速度又保养了学生学习数学的兴趣和信心。

5、七年级上册数学教学计划从算式到方程

  一、创设情境,展示问题。

  问题1:

  世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

  算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为x吨,则124=25x—1 学生独立思考,小组交流,代表发言,解释说明。

  问题1的算术解法:

  (50+70)÷2=60(千米/时) 60*5—70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。 示意图有助于分析问题。

  二、寻找关系,列出方程。

  1、对于问题1,如果设王家庄到翠湖的路程是x千米,则: 路程 时间 速度 王家庄—青山 王家庄—秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。

  2、比一比:列算式与列方程有什么不同?哪一个更简便?

  3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

  学生思考回答:

  1、王家庄—青山(X—50)千米,王家庄—秀水(X+70)千米。

  2、汽车以每小时(X—50)÷3千米的速度从王家庄到青山;以每小时(X+70)÷5千米的速度从王家庄到秀水。 让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。

  三、定义方程,建立模型。

  1、定义:(板书)含有未知数的等式叫做方程。

  练习一:判断下列式子是不是方程,是的打“√”,不是的打“x ”。

  (1)1+2=3 ( ) (2) 1+2x=4 ( ) (3) x+y=2 ( ) (1) x+1—3 ( ) (2) x2—1=0 ( )

  练习二:根据下列问题,设未知数并列出方程。

  (1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为x cm。那么依题意得到方程:_________。

  (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过x月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________。

  (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为x,那么女生数为 ,男生数为 。 由此依题意得到方程:________________。 [议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元X),未知数的指数是1次,这样的方程叫做一元一次方程。

  3、方程的解:再看刚才列出的方程:4x=24,你能观察出当x=?时,4x的值正好等于24吗。学生回答后总结方程的解和解方程的概念。

  4、归纳分析实际问题中的`数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。

  (学生举例并完成练习一) 师生合作,根据数量关系列出方程。

  教师结合练习给出方程、一元一次方程的定义。

  (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解。 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。

  学生举出方程的例子。

  (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。

  四、训练巩固,课堂小结。

  1、根据下列问题,设未数列方程,并指出是不是一元一次方程。

  (1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?

  (2)甲种铅笔每枝0。3元,乙种铅笔每枝0。6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?

  (3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。

  2、小结。

  本节课你学到了哪些知识?哪些方法?

  五、布置作业。

  A、必做 82页,第1、2、3、题;

  B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币?

  C、课堂评价。

  1、本节课的主要知识点是:

  2、你对列方程这节课的感受是:

  3、这节课我的困惑是:

  (1) 设跑x周。 列方程400x=3000

  (2)设甲种铅笔买了x枝,乙种铅笔买了(20—x)枝。列方程 0。3x+0。6(20—x)=9 (3)设上底为x cm,下底为(x+2)cm。列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。

6、数学八年级上册《分式方程》的教学计划

  教学目标:

  1.知识目标:

  (1)掌握解分式方程的步骤。

  (2)理解解分式方程时验根的必要性。

  2.能力目标:

  会按照解分式方程的步骤解分式方程。

  3.情感与价值观:

  (1) 培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

  (2) 运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。

  老师引导学生自主探索分式方程的解法,将分式方程转化为整式方程,在解题中亲身体验“转化”思想。弄清了“转化”的方向,也就明白了解分式方程的步骤,解题思路自然清晰,能力随之形成。

  重点:

  1.探索解分式方程的步骤,熟练掌握分式方程的解法。

  2.体会解分式方程验根的必要性。

  难点:如何将分式方程转化为整式方程;体会分式方程验根的必要性。

  学情与教材分析:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。但基础不够扎实,如计算容易出错、考虑问题不够严谨等。另外在学习本节课之前,已经学习过《解一元一次方程》。对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。但估计绝大部分同学稍加回忆,应能接近以前的水平。本节课的内容处在《分式》这章的后半部。《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。

  教学准备:投影仪、各例题的标准解答过程。

  教学过程:

  一、课堂导入

  由课本第87页(即前一节课的内容:根据实际问题列出分式方程,但未求解)产生的方程入手,引入解分式方程的必要性。

  二、新课:

  例1 解分式方程:

  (1) 由学生自主探索或互相讨论完成,老师巡视学生完成情况,对于学生可能出现的几种典型的解法用投影仪展示,让同学讨论,得出较好的`解法。

  [设计意图:课文的第一个例子是:_______,这个例子我估计绝大部分学生会采用交叉相乘(以往教学中学生常常提及)。虽也去掉分母,但学生还没意识到是在两边乘了最简公分母_____,若我自己去解释,又有灌输之嫌。于是我干脆暂时避开此例,自己设计一个例子_____,这样避免了学生采用交叉相乘的方法求解]

  [学情预设:由于本节课的内容是紧接在分式的运算之后,多数学生会对方程进行通分,发现分母相同,得出分子应相等,解出x的值。这种情况与直接去分母效果相同,但解法较繁琐。第二种情况是与解含有分母的整式方程(如: )相联系,模仿整式方程的解法去分母,化为整式方程,求解整式方程得解。估计采用第二种方法的学生是少数的。另外,若没有学生采用第二种方法,我会展示自己依第二种方法的解答过程,以供学生进行讨论、比对,在讨论中感悟到第二种方法更简便。突破本节课的难点]

  (2)引导学生检验刚才求得的解是否是原方程的解。

  [设计意图:让学生明白将值代入原方程检验是分式方程验根的一种方法,另一种方法是直接检验分母是否为0,这种方法将在后面涉及]

  [学情预设:学生可将求得的值代入原方程,但书写格式不规范,如有的同学将解直接代入方程两边,却仍用等号将左右两边相连,然后两边同时计算。我计划用投影仪,选择几位同学的做法显示给大家。让大家评选出最好的格式——将解得的根分别代入方程的左右两边计算,看左、右两边的结果是否一致]

  [知识链接:对于验证一个值是否是方程的解,在求解一元一次方程时,有进行过相应的训练。绝大多数学生明白可将值代入原方程,但他们往往将值同时代入原方程。

  显然,这种书写不够规范。应分别代入两边验证为好]

  例2 解方程:

  让学生自已求解,解得_____,引入增根的概念。并说明验根除了代入原方程,还可检验各分母是否为0,从而判别是否是增根。

  [设计意图:学生不明白为何代入原方程的分母或最简公分母也可验根,我设计此例的目的是让学生明白解分式方程可能会产生让分母为0的根,即增根,自然以后解分式方程要检验了]

  [学情预设:在前面学习分式有关内容时,学生对于像_____是相反的关系掌握得很好,可以轻松得出 _____,这样在方程两边同时乘以_____即可。若学生没注意到这个细节,老师可稍加提示]

  [知识链接:有了第一个例子,学生已经明白解分式方程的步骤,可以自行解此方程]

  例3 解方程:

  [设计意图:此题需要学生对分母分解因式,为解最一般的分式方程起示范作用]

  [学情预设:有学生直接在方程两边乘以_____。这种方法可以,但繁琐。在学生解完之后,引导他们对在方程两边乘以最简公分母 还是乘以 进行对比。得出较简便的方法]

  [知识链接:学生已经学习过分解因式 ___

  三、阶段小结:

  引导学生总结解分式方程的步骤:

  1.在方程的两边同时乘以最简公分母,约去分母,化成整式方程。

  2.解这个整式方程。

  3.验根_______,引导学生对两种验根方法的优、缺点进行讨论。

  [设计意图:梳理一遍解题步骤,解题思路会更清晰]

  四、强化练习:

  1.完成课本第90页的随堂练习。完成后学生相互交换改卷,查找错误并打分。评分标准由学生在课堂上集体商定。

  [设计意图:将小结的知识点内化到学生的知识结构中。简单机械做题,有一定的效果,但效率不高。学生自测,接下去同学互改,能调动学生的积极性。在商量评分标准的过程中,学生自然体会到各个步骤的重要性。这样既完成了强化练习,又提高了学习效率]

  小编为大家提供的分式方程教学计划表大家仔细阅读了吗?最后祝同学们学习进步。

相关文章

推荐文章