九年级数学上册《公式法解一元二次方程》教学反思
1、九年级数学上册《公式法解一元二次方程》教学反思
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根。
在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的.符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。
2、九年级数学上册《实际问题与一元二次方程》教学反思
问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:
1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?
(学生很自然列方程解决)
改换题目条件和问题:
2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。
于是学生很容易完成下列求解。
解:设该商品定价为x元时,可获得利润为y元
依题意得:y=(x-40)?〔300-10(x-60)〕
=-10x2+1300x-36000
=-10(x-65)2+6250300-10(x-60)≥0
当x=65时,函数有最大值。得x≤90
(40≤x≤90)
即该商品定价65元时,可获得最大利润。
增加难度,即原例题
3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的`结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。
3、七年级数学上册《解一元一次方程去分母》教学反思
通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程,接下来这一节课,我们要重点讨论是:
(1)解方程中的“去分母”。
(2)根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。
由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程
怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的'变形方法来解它,求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。
在解方程中去分母时,我们发现存在这样的一些问题:
(1)部分学生不会找各分母的最小公倍数,这点要适当指导。
(2)用各分母的最小公倍数乘以方程两边的项时,漏乘不含分母的项。
(3)当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以2后,得到2x—x+2=2,其中x+2没有加括号,弄错了符号。
4、九年级数学上册《解一元二次方程》教学反思
学好一元二次方程,重要的是要学会背公式。除了最主要的求根公式你要背熟外,就是要学会总结不同方程解决形式。形如x+2bx+b=0,你要能熟练的将其变为(x+b)=0这样的`形式;形如x+(a+b)x+ab=0的形式,你要熟练将其变为(x+a)(x+b)=0;再高阶的,二次项前面也有系数的,你也要学会变形。总之掌握将普通二项式变为两个一项式的乘积是你必须要掌握的。当你变不了的时候,你就要使用求根公式来解决。
方程类问题都是如此求解的。二次方程求解方法的核心,是使其转变为一次方程来求解。三次方程这是转变为二次方程与一次方程的乘积求解。越往后越是这样。求解的主旨是降幂。使高次项变为多个低次项的乘积是求解方程的指导思想。可能你只是一个小学生或是初中生,你不一定明白这个道理,但是随着学习的深入,你要去思考。我给出了解决的一般路径,但要熟练的掌握仍旧需要不停的解题做题,通过练习来掌握。一元二次方程并不难,相信以你的聪明与勤奋一定会早日掌握的。
5、九年级数学上册《列一元二次方程解应用题》教学反思
在日常生活中,许多问题都可以通过建立一元二次方程这个模型进行求解,然后回到实践问题中进行解释和检验,从而体会数学建模的思想方法,解决这类问题的关键是弄清实际问题中所包含的数量关系。
本节内容教材提供了与生活密切相关,且有一定思考和探究性的问题,所以在教学中我让学生综合已有的知识,经过自主探索和合作交流尝试解决,提高学生的思维品质和进行探究学习的能力。主要有以下几个成功之处:
1、让学生自主交流方法,充分展示学生不同层次的思维,互相学习,互相促进,从而创建平等、轻松的学习氛围。
在出示了例7后,我提示学生解决此类问题可以自己画出草图,分析题目中的等量关系,学生根据题意很快可以画出图形,然后,我让他们找出题目中可以写等量关系的条件,根据条件写出文字的等量关系。在这个环节有的学生遇到了困难,于是,我就让他们互相讨论,通过讨论,大部分学生可以写出等量关系,我再让会的学生说出理由。在这个教学过程中,学生互相学习,互相促进,轻松地学会了知识。
2、让学生自主归纳,总结方法,尊重学生的个性选择,学生的集体智慧更符合学生自己的口味,比教师说教更易于被学生接受。
例7的解答还有一种更简单的方法,我让学生观察图形,在图形上做文章,还是让他们自主探索,讨论,很快有一部分学生想到了把图形中的道路平移到一边的方法,这样就把种植面积集中起来,方程就好列了。这时,我就让学生上来讲述方法。学生用自己的语言讲述,这样其他人接受起来更快一些。并且,学生还总结此类问题的解决方法——将图形平移,在以下练习的几道题中都能得心应手的解答了。由此可见,通过自己思考学到的知识能够灵活应用,且掌握的好。
在这节课的`教学中也存在一些不足之处,教材中在例题之前设计了一个应用,在解决这个问题上耽误了时间,延误了下面的教学,导致设计的练习题没有做完,所以在下次教学时,这个应用问题只让学生列出方程即可,不必在解答上花费时间。另外,练习设计过于单一,只涉及到了例题这种类型的练习,变式练习题少,所以,在下次教学时,要设计两道不同题型的题目。
由这节课的教学我领悟到,数学学习是学生自己建构数学知识的活动,学生应该主动探索知识的建构者,而不是模仿者,教学应促进学生主体的主动建构,离开了学生积极主动的学习,教师讲得再好,也会经常出现“教师讲完了,学生仍不会”的现象。所以,在以后的教学中,我要更有意识的多给学生自主探索、合作交流的机会,更加激发学生的学习积极性,使学生在他们的最近发展区发展。
6、九年级数学上册《公式法解一元二次方程》教学反思
利用求根公式解一元二次方程的一般步骤:
1、找出a,b,c的相应的数值
2、验判别式是否大于等于0
3、当判别式的数值符合条件,可以利用公式求根。
在讲解过程中,我让学生直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多:
1、a,b,c的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的.符号
2、求根公式本身就很难,形式复杂,代入数值后出错很多、其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入。在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果。
7、七年级数学上册《解一元一次方程》教学反思
在学生学习了解一元一次方程一般都采用的五步变形方法以后,这节课重点探讨解下列方程的技巧方法,
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
①把小数的`分母化为整数的分母。②想办法将分母变为1,即把左右两边分子、分母都乘以15,原方程变形为3(10x-3)-5(4x-10)=15
只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方法。解一元一次方程一般都采用五步变形灵活应用,除此之外,据不同题型,运用一些技巧方法,就能快捷地求出其解