《商的变化规律》教学教案一等奖设计
1、《商的变化规律》教学教案一等奖设计
教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:发现规律,掌握规律
教学难点:利用商的变化规律进行简便计算。
教学准备:课件,实物投影
教学过程:
一、谈话导入,揭示新课
师:同学们,来到阶梯教室,能和四(1)班的同学们在阶梯教室上课,我非常高兴,因为我班学生个个都是最棒的,上课认真,思维敏捷,发言积极。这节课曾老师将带大家一起探索数学的奥秘,有没有信心把它学好?
师:先来一场热身赛,快速抢答。预备开始。
2002= 20020= 168= 20040= 1608= 3208= 142=
56080= 28040=
师:同学们算得既对又快,注意观察这些算式,你能把它们分类吗?
师:依据是什么?(按被除数不变、除数不变、商不变。)
二、探究体验,建构新知
(一)、被除数不变时,商的变化规律。
师:我们先来观察第一组算式,你发现了什么变了,什么没变?(被除数不变,除数和商有变化。)
师:从上往下看,除数和商有什么变化?(被除数不变,除数扩大,商反而缩小。)
从下往上看,除数和商有什么变化?(被除数不变,除数缩小,商反而扩大。)
师总结:被除数不变,除数扩大(或缩小),商反而缩小(扩大)。
师:继续观察除数和商的扩大、缩小有什么规律呢?
②式与①④比(除数乘10扩大了,商反而除以10缩小了。)
③式与②式比(除数乘2扩大了,商反而除以2缩小了。)
小结:被除数不变,除数乘几,商反而除以几。
②式与③式比(除数除以2缩小了,商反而乘2扩大了。)
① 式与②式比(除数除以10缩小了,商反而乘10扩大了。)
小结:被除数不变,除数除以几,商反而乘几。
师:谁能完整地说一说,当被除数不变,商的变化规律?
【被除数不变,除数乘几(或除以几),商反而除以几(或乘几)】
师实物讲解,平台展示。
练习:
11 21
231 33 = 7
77 3
(二)除数不变时,商的变化规律。
课件出示:
1、 什么变了,什么没变?
2、 商随着谁的变化而变化?怎么变的'?
3、 它们的变化有规律吗?
讨论、交流、汇报结论:
除数不变,被除数乘几(或除几),商也乘几(或除几)。
练习:
132 11
26412 = 22
1320 110
(三)商的不变规律。
师:刚才同学们通过计算、观察、比较、讨论、总结出了商的变化规律。你们再想一想、猜一猜如果要商不变,被除数、除数会发生什么变化了?
师:同学们说对了吗?同学们可以带着以下问题通过计算、观察、比较、讨论等方法自己研究研究。
1、什么变了,什么没变?
2、商随着谁的变化而变化?怎么变的?
3、它们的变化有规律吗?
汇报交流。
师:被除数、除数同时乘(或除以)相同的数,这个数是0可以吗?
师:在这一条规律中要注意些什么?(同时、相同的数)
师:谁会完整地说一说商不变规律呢?
被除数和除数同时乘(或除以)相同地数,(0除外),商不变。大家一起读一读。师:通过大家认真的观察、比较,同学们发现了商随被除数、除数的变化而发生变化的规律,这就是今天学习的内容。(板书课题:商的变化规律)
4、练习
729=8
72090=
7200900=
三、应用练习,拓展提升
1、看谁算得又对又快?
6300700= 8100300= 280020=
2、谁是它的朋友。(用线段连接)
32080 18060
1800600 16040
36060 3200800
3、思考题,填空。
(1)12030=(1203)(30□)
(2)6012=(602)(12○2)
(3)20040=(200□)(40○5)
(4)15050=(150○□)(50○□)
四、课堂小结
1、这节课你有什么收获?
2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?
2、《商的变化规律》教学教案一等奖设计
一、教学目标
(一)知识与技能
引导学生理解和掌握商不变的规律,并能运用这个规律进行相关的计算。培养学生初步的观察、概括的能力。
(二)过程与方法
引导学生经历提出猜想、举例验证、得出结论、实际应用的学习过程,使学生理解商不变的规律的同时获得研究问题的方法。
(三)情感态度和价值观
在主动参与数学活动的过程中获得成功的体验,渗透“变与不变”的函数
二、教学重难点
教学重点:理解和掌握商不变的规律,获得探索规律的经验和方法。
教学难点:用数学语言表达思考的研究过程,归纳概括商不变的规律。
三、教学准备
课件
四、教学过程
(一)创设情境,建立知识
1.创设数学情境,复习旧知
师:做个小游戏,看看谁算得又快又好?
6×2=6×20=6×200=6×
师:你们算得可真快,用到了我们学过的什么知识?
(一个因数不变,另一个因数乘或除以一个数,积同时乘或除以相同的数。)
师:咱们还学过什么相关的知识?
(积不变的规律)
师:怎样可以保证积不变呢?
(一个因数乘或除以一个数,另一个因数除以或乘相同的数(零除外)积不变。)
师:大家还想到了我们学过的什么知识?
学习除法时,我们又发现了商变化的规律,这种情况下,商是怎样变化的呢?
(被除数不变,除数乘或除以一个数(0除外),商反而除以或乘相同的数。)
除数不变,被除数乘或除以一个数(0除外),商也乘或除以相同的数。
2.依托知识
师:这是我们已经掌握的积变化的规律、积不变的规律、商变化的规律,根据这些你想到了什么?
(商也可以不变)
师:怎么会想到商有不变的规律呢?
(积有不变的规律,商就应该有不变的规律。)
师:还可以怎样想?
师:看来我们的猜想需要一定的依据,到底怎样使商不变,今天我们就一起来研究商不变的规律。
板书:商不变的规律
(二)积累经验,掌握研究方法
1.依据联系,提出猜想
(1)遇到新问题或不会的,我们怎么办呀?——想会的。
咱们一起再来看看已经掌握的这些知识。
(2)想一想,我们学过的这些规律,有什么共同的特点?
(都是三个量两个量变,一个量不变)
今天研究的就是商不变,那两个量呢?
板书:被除数?除数?商不变
师:被除数和除数是随便变吗?
(要有规律的变)
(3)师:根据你前面学习的经验,具体地说说被除数、除数怎样有规律的变化,才能保证商不变?
板书:被除数乘一个数,除数除以相同的数,商不变
被除数除以一个数,除数乘相同的数,商不变
被除数乘一个数,除数同时乘相同的'数,商不变
被除数除以一个数,除数同时除以相同的数,商不变
2.自主探究,举例验证
(1)举例方法指导
师:这么多种猜想,到底哪种猜想成立呢?有点儿难,怎么办呢?
(举些例子来验证猜想。)
板书:验证
师:怎么验证?
(举一些例子。)
师:举什么样的例子?然后怎么办呀?
(2)自主探究,填写研究报告
学习建议
师:同学们手里都有一个研究报告单,先选一条猜想,然后再举例子来验证,最后看看你验证的猜想是否成立?
(3)个人汇报,合作交流
①先验证不成立的猜想
师:他验证的是哪一条?看懂他的意思了吗?请这位同学来讲一讲。
谁也验证的是这一条?成立吗?一个反例够吗?
②再验证成立的猜想
师:他验证的是哪一条?看懂他的意思了吗?说说你是怎样验证的?
师:一个例子能证明猜想一定成立吗?
再看看他的例子?
还有谁也验证的是这一条?说明什么?
师:这些例子符合这个规律,说明猜想成立。
师:咱们用黑板上的这组算式来验证,应该怎么看呢?谁愿意像老师这样标一标?讲一讲?还有机会吗?
学生体会到“证明一个猜想不成立的时候,我们只需要举出一个反例就可以了”,“证明一种猜想成立的时候,我们就需要举出大量的例子来验证,这样得到的结论才具有普遍性。”使学生的
3.归纳概括,得到结论
(1)把成立的两条猜想小声地读一读。
能把这两句话合成一句话吗?
同桌同学互相说说。(板书归纳)
(2)追问为什么0除外呢?
在什么地方应用到了商不变的规律呢?
4.应用练习
(1)780÷30,可以怎样解答?
预设:用除数是整十数的笔算方法解决的。
师:有同学是这样做的。
出示:
师:这样做对吗?为什么?
学生讨论反馈
预设:可以,因为利用了商不变的规律,被除数和除数同时除以10,商不变,这样做可以使计算更简便。
(2)120÷15
师:这道题我们可以怎样解决?
预设:用除数是两位数的笔算方法解决的。
师:利用今天学习的商不变的规律能不能解决这道题?
出示:
120÷15
=(120×4)÷(15×4)
=480÷60
=8
师:被除数和除数为什么都乘4?
生:根据被除数和除数的特点以及商不变的规律,可以直接口算解决。
5.讨论余数
840÷50
师:利用商不变的规律,我们可以列这样的竖式。
出示
师:有的同学认为余数是4,有的同学认为余数是40,到底是多少?为什么?
生:是40,根据商不变的规律,把这道题转化为84个十除以5个十,所以余下的是几个十。
(三)巩固练习,深化认识理解
1.口算应用,加深理解
下面的题你会算吗?怎么算的?
120÷30=6300÷700=
通过今天的学习,你知道这样做的道理了吗?
商不变的规律在除法口算中已经用过,在今后的学习中还会继续应用。
2.顺应结构,建立模型
(四)回顾历程,产生新的思考
1.咱们回顾一下研究的过程。
2.是什么引发了我们今天的猜想?因为知识之间的内在联系,引发了我们今天的猜想。
3.把四个规律放在一起看,他们有什么共同的特点?
4.补充知识
乘法、除法里存在这样的规律,你又想到了什么?
今天的学习,使同学们产生了新的思考,老师真为你们高兴。回去后可以用今天研究问题的方法,自己去探究新问题。
3、《商的变化规律》教学教案一等奖设计
教学内容:教材第93页例5
教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:发现规律,掌握规律
教学难点:利用商的变化规律进行简便计算。
教学准备:课件,实物投影
教学过程:
一、谈话导入,揭示新课
师:同学们,来到阶梯教室,能和四(1)班的同学们在阶梯教室上课,我非常高兴,因为我班学生个个都是最棒的,上课认真,思维敏捷,发言积极。这节课曾老师将带大家一起探索数学的奥秘,有没有信心把它学好?
师:先来一场热身赛,快速抢答。预备——开始。
200÷2= 200÷20= 16÷8= 200÷40= 160÷8= 320÷8= 14÷2=
560÷80= 280÷40=
师:同学们算得既对又快,注意观察这些算式,你能把它们分类吗?
师:依据是什么?(按被除数不变、除数不变、商不变。)
二、探究体验,建构新知
(一)、被除数不变时,商的变化规律。
师:我们先来观察第一组算式,你发现了什么变了,什么没变?(被除数不变,除数和商有变化。)
师:从上往下看,除数和商有什么变化?(被除数不变,除数扩大,商反而缩小。)
从下往上看,除数和商有什么变化?(被除数不变,除数缩小,商反而扩大。)
师总结:被除数不变,除数扩大(或缩小),商反而缩小(扩大)。
师:继续观察除数和商的扩大、缩小有什么规律呢?
②式与①④比(除数乘10扩大了,商反而除以10缩小了。)
③式与②式比(除数乘2扩大了,商反而除以2缩小了。)
小结:被除数不变,除数乘几,商反而除以几。
②式与③式比(除数除以2缩小了,商反而乘2扩大了。)
① 式与②式比(除数除以10缩小了,商反而乘10扩大了。)
小结:被除数不变,除数除以几,商反而乘几。
师:谁能完整地说一说,当被除数不变,商的变化规律?
【被除数不变,除数乘几(或除以几),商反而除以几(或乘几)】
师实物讲解,平台展示。
练习:
11 21
231÷ 33 = 7
77 3
(二)除数不变时,商的变化规律。
课件出示:
1、什么变了,什么没变?
2、商随着谁的变化而变化?怎么变的?
3、它们的变化有规律吗?
讨论、交流、汇报结论:
除数不变,被除数乘几(或除几),商也乘几(或除几)。
练习:
132 11
264÷12 = 22
1320 110
(三)商的不变规律。
师:刚才同学们通过计算、观察、比较、讨论、总结出了商的变化规律。你们再想一想、猜一猜如果要商不变,被除数、除数会发生什么变化了?
师:同学们说对了吗?同学们可以带着以下问题通过计算、观察、比较、讨论等方法自己研究研究。
1、什么变了,什么没变?
2、商随着谁的变化而变化?怎么变的?
3、它们的变化有规律吗?
汇报交流。
师:被除数、除数同时乘(或除以)相同的数,这个数是“0”可以吗?
师:在这一条规律中要注意些什么?(同时、相同的.数)
师:谁会完整地说一说商不变规律呢?
被除数和除数同时乘(或除以)相同地数,(0除外),商不变。大家一起读一读。师:通过大家认真的观察、比较,同学们发现了商随被除数、除数的变化而发生变化的规律,这就是今天学习的内容。(板书课题:商的变化规律)
4、练习
72÷9=8
720÷90=
7200÷900=
三、应用练习,拓展提升
1、看谁算得又对又快?
6300÷700= 8100÷300= 2800÷20=
2、谁是它的朋友。(用线段连接)
320÷80 180÷60
1800÷600 160÷40
360÷60 3200÷800
3、思考题,填空。
(1)120÷30=(120×3)÷(30×□)
(2)60÷12=(60÷2)÷(12○2)
(3)200÷40=(200×□)÷(40○5)
(4)150÷50=(150○□)÷(50○□)
四、课堂小结
1、这节课你有什么收获?
2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?
4、《商的变化规律》教学教案一等奖设计
教学目标:
1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。
2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。
3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。
教学重点:
发现规律,掌握规律
教学难点:
利用商的变化规律进行简便计算。
教学准备:
小黑板
教学过程:
一、故事设疑、激发兴趣
1、故事:花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你6个桃子,平均分给你们3只小猴吧。”小猴一想,自己只能得到2个桃子,连连摇头说:“太少了,太少了。”
猴王又说:“好吧,给你60个桃子,平均分给30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给300只小猴,你总该满意了吧?”小猴听到猴王要给600个桃子,开心地笑了,猴王也笑了。
2、师:谁是聪明的一笑?为什么?
生:猴王的笑是聪明的一笑,不管增加多少,每只小猴得到的都是2个桃子。
师:“你是怎么知道的呀?”
二、探究新知、激发冲突
1、口算比赛,并进行分类
(请在老师喊开始后,想出得数的同学就可以直接在座位上回答。)
(1)出示口算卡片:6÷3=60÷30=120÷60600÷300=
200÷2=200÷20=200÷40=
16÷4=160÷4=1600÷4=
生:快速抢答后把这六道算式进行分类。(指名板演师帮忙调整)
再说一说为什么这样分?
(2)指导学生观察比较除数不变的一组算式,发现、归纳除数不变时,商的变化规律。
16÷4=160÷4=1600÷4=
师:我们先来观察这一组中的三道算式,它们的除数不变(标上“不变”),那被除数和商怎么变的,有什么规律吗?和同桌说一说。
生:反馈。(师注意引导学生规范的说,并用彩笔标出变化过程。)
师:谁能把我们从上往下观察到的规律用一句话说一说。
生:除数不变,被除数乘几,商也乘几。
师:你真聪明,那么在这句话中,前后两个几是怎样的数?
生:相同的数。
师:所以这句话还可以这样说(边说边出示)
除数不变,被除数乘一个数,商也乘一个相同的数。全班一起把这个规律说一遍。(生齐读)
师:刚才我们是从上往下观察这三道算式,如果从下往上观察呢?
生:反馈。(师用不同颜色的彩笔标出变化过程。)
师:谁也能用一句话说一说?
生:
(3)指导学生观察比较被除数不变的一组算式,发现、归纳被除数不变时,商的变化规律。
200÷2=200÷20=200÷40=
师:你们真了不起,懂得用观察、比较、归纳的方法发现除数不变时,被除数和商的变化规律。下面我们再来观察这一组,被除不变(标上“不变”),除数和商又是怎么变化的呢?和同桌说一说。
A:如果学生直接说出规律,请学生具体地说一说是怎么发现的吗?(师把规律补充完整,全班齐读)
B:如果学生说的是算式间的变化过程,请学生像刚才那样也用一句话来说一说。(师把规律补充完整,全班齐读)
(4)每个学生各写一组除法算式(2-3道),验证这两个商的变化规律的普遍性。
2、认识商不变规律
(1)6÷3=60÷30=120÷60600÷300=
师:刚才我们研究了除数不变时,商的变化规律;又研究了被除数不变时,商的变化规律,下面我们继续来研究一组除法算式。
师:你发现了什么?
生:商不变。
师:有什么问题要提吗?
生:反馈。(师出示问题:被除数和除数怎样变,商才不变?)
师:老师请1、2两组的同学从左往右观察,请3、4两组的同学从右往左观察,然后在四人小组中说一说你发现了什么规律?
(2)引导学生发现、归纳商不变规律,师把规律补充完整。
(3)应用商不变规律填一填:24÷8=3(24○□)÷(8○□)=3
师:下面我们就运用发现的这个规律,想一想要使商不变,这里的○和□应该怎样填?
师:很好,可见这句话不完整,那应该怎样补充?(生说0除外,师再补充0除外)然后介绍这个规律叫“商不变规律”,全班齐读,再找关键词。
三、应用——提升
师:那么这些规律在我们平时的计算中有什么作用?能不能对计算
1、我会算。
3420÷57=6076800÷240=3205600÷140=40
34200÷57=76800÷24=560÷14=
342÷57=76800÷2400=56000÷1400=
(学生口答得数)
师:这么大的数,大家怎么做的这么快?
生:利用刚才的发现的规律。
师:能不能说的详细点呢?(生说每组所应用的规律)
师:到底算的对不对呢?规律在这里用的合不合理呢?用计算器来验证一下。(学生用计算器验证)
5600……0÷1400……0=
100个0
100个0
师:计算器没有这么多位可以出现的,怎么办?
2、我会填。
根据规定32÷8=4,在□里填上合适的数,在○里填上符号。
(32×4)÷(8○□)=4
(32○□)÷(8÷2)=4
(32○□)÷(8○15)=4
(32○□)÷(8○□)=4
师指最后一个算式:这样的算式能写完吗?老师也来写几个:(32×m)÷(8×m)=4,(32÷m)÷(8÷m)=4,可以吗?你觉得对m有什么要求吗?得出:m≠0(板书:0除外)
3、我会简算。运用学过的规律不列竖式进行口算。(写出简便计算的过程)
(1)600÷25=
(2)2100÷125=
[通过练习,进一步熟悉商的变化规律,特别是商不变规律,了解商不变的规律的应用价值。]
四、
师:今天这节我们一起学习了什么?(出示课题:商的变化规律)
师:你认为你自己最大的收获是什么
板书:商的变化规律
教学反思:
一、给学生足够的探索空间,把课堂还给学生。
在数学课中,教师要为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,留给学生足够的思维空间。我在这节课中尽量体现这一点。由故事导入新课,当学生回答:“谁是聪明的一笑?”之后,我让学生说出原因(算式),随机板书算式,然后让他们分小组讨论,把自己的发现在小组内交流,最后全班一起
二、改变了教材的编排顺序。
教材先是安排学习商的两个变化规律,然后,由填写表格,学习商不变的性质。在教学时,我改变了教材的顺序,先讲商不变的性质,再讲商的两个变化规律。符合由易到难的特点,学生易于掌握。
三、注重培养学生
本节课,学习了商的变化规律的三条规律,每一次都是让学生通过“观察——探索——交流——
由于,这节课的课堂容量比较大,因此,时间安排不够合理,前面花的时间较多,导致练习的时间较少;回答问题没能够面向全体学生;课堂气愤不够活跃,部分学生的积极性不够高!
5、《商的变化规律》教学教案一等奖设计
教材分析
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
教材利用学生已有的计算技能,通过计算填表,提出问题引导学生自己思考发现商的变化规律。这部分内容渗透函数
学情分析
本节课从而激起学生一探究竟的兴趣。
关于商的变化规律,主要包含了商变和商不变两个内容,以前面掌握了乘法运算和除法运算为基础,从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。学生比较难理解被除数不变,除数和商之间的变化规律。
教学目标
1、通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2、引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3、培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点和难点
重点:引导学生发现并理解商的变化规律。
难点:正确理解被除数不变,除数和商之间的变化规律。
6、《商的变化规律》的教学反思
一、准确把握起点,合理的运用知识迁移
本节课的变化规律是第五单元的教学内容,前边在第三单元中学生已经学习了“积的'变化规律”,为这节课的教学打好了知识基础。我抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调——这些大胆的猜测是否正确呢?需要我们进一步的验证。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
二、自学并经历探索研究的全过程
学生自学后,让学生经历了三次验证过程,看似有些重复,但细品起来,每次的侧重点都有所不同:第一次是使学生知道例举法是一种行之有效的研究方法,使用此方法时应尽可能多的举例,这样才有可能避免偶然性,提高正确率;第二次是让学生有意识的经历挫折,我们的猜测不总是正确的,可以通过实验来修正猜测,得出正确结论;第三次是提醒学生当研究思路出现偏差时,应学会及时调整,积极寻找新的思路继续研究,直至得出结论。三个侧重点层层递进,紧紧围绕着培养学生的探究能力展开。
在这里,知识的掌握和运用不是最终目标(其实学生在这种积极主动地研究状态下、在经历“做”的过程中,自然理解掌握了被除数、除数、商这三者的变化规律,且会印象深刻),而引领学生经历研究问题的一般过程,并在过程中培养学生认真观察、大胆推测、勇于实践、科学严谨、不轻言放弃等良好的学习品质和数学素养,是教师的出发点和落脚点。这正是新课标所倡导的数学教育理念:“使学生经历数学活动过程,获得对数学的理解的同时,在思维能力、情感态度与价值观诸方面得到发展”。
总之,本节课在教学设计时牢牢地抓住了两点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习情趣和激情,提出猜测,展开教学;二是不仅仅将课堂教学的重点落在三个规律上,而是落脚到通过教学活动,培养学生的数学品质上,将这种“猜测、验证得出结论”的数学研究方法深入到每个学生之中,真正让学生成为一名数学知识的猜测者、研究者、发现者,从而获得学习数学的乐趣。
7、《商的变化规律》的教学反思
商的变化规律是第五单元的教学内容,前边已经学习了“积的变化规律”,为这节课打好了知识基础,开始就抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了学生的思考,学生很自然的由乘法中的变化规律类推出了除法中的`变化规律,找到了新知的切入点,合理的运用了知识的正迁移,那么猜测是否正确呢?需要我们进行验证。三次验证是层层递进的,引导学生在“猜”、“算”、“说”的过程中理解和掌握被除数、除数、商他们之间的变和不变的规律,培养了学生认真观察、敢于猜测、举例验证、得出结论的数学学习的方法。借助规律的发现培养学生的探究意识和能力。
这节课主要抓住两个切入点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习欲望,提出猜测,进行探究学习;二是通过小组学习活动,吧猜测——举例验证——得出结论的数学方法渗透给每一个学生,培养学生的自主探究、自主交流的能力。
这节课用了连着的两个课时,如果让我重新上这节课,我会把商变化的规律和商不变的规律分开来上,充分地联系更多的生活实际,引导学生更深层次地去发现理解商的变化规律。
8、《商的变化规律》的教学反思
商的变化规律是第五单元的教学内容,前边已经学习了“积的变化规律”,为这节课打好了知识基础,开始就抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了学生的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,找到了新知的切入点,合理的运用了知识的正迁移,那么猜测是否正确呢?需要我们进行验证。三次验证是层层递进的,引导学生在“猜”、“算”、“说”的过程中理解和掌握被除数、除数、商他们之间的变和不变的规律,培养了学生认真观察、敢于猜测、举例验证、得出结论的数学学习的方法。借助规律的发现培养学生的探究意识和能力。
这节课主要抓住两个切入点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习欲望,提出猜测,进行探究学习;二是通过小组学习活动,吧猜测——举例验证——得出结论的数学方法渗透给每一个学生,培养学生的自主探究、自主交流的能力。
这节课用了连着的两个课时,如果让我重新上这节课,我会把商变化的规律和商不变的规律分开来上,充分地联系更多的生活实际,引导学生更深层次地去发现理解商的变化规律。
9、《商的变化规律》教学反思
《商的变化规律》这部分内容,是在学生学习过除数是一位数、两位数的笔算除法的基础上进行教学的。这部分知识的掌握,既为后面学习简便运算做准备,也为学生今后学习小数除法、分数和比的有关知识做铺垫。是小学数学中十分重要的基础知识。
通过分析教材,我觉得三个规律要想在一堂课教学中完成,会显得仓促,不利于学生对知识的理解和掌握。三个规律中,商不变的规律是重点,商随除数变化的规律是难点。只有把它弄清楚了,下面的学习才会顺利。因此我将这一节课分为两个课时,第一课时教学商随被除数、除数变化而变化的规律。总结出:“在除法里,被除数不变,除数乘或除以一个数(0除外),商就除以或乘一个相同的数”。“除数不变,被除数乘或除以一个数(0除外),商也乘或除以一个数相同的数”之后,就进行巩固练习;第二课时教学商不变的规律。总结出:“在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变”这个性质,同时补充被除数、除数末尾同时有零时利用这一性质进行竖式的简化。这样就能够使每一部分的内容都足够完整,使学生有足够的时间通过“计算——观察——猜测——交流——验证——总结”完成学习任务,获得的知识足够清楚明白。在学生参与发现规律、探究规律、总结规律、验证规律的过程中,让学生成为学习的主人。同时在观察、思考、尝试、交流过程中,实现师生互动、生生互动。
在教学的'过程中,教师要多为学生创造交流和思考的时间和空间。把学习的主动权真正地还给学生。让学生在一种宽松、和谐、民主的氛围中去探索交流,感受学习的乐趣,体验成功的快乐,进而提高学习的兴趣。
10、《商的变化规律》教学反思
商的变化规律是第五单元的教学内容,前边已经学习了“积的变化规律”,为这节课打好了知识基础,开始就抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”
一句话引起了学生的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,找到了新知的切入点,合理的运用了知识的正迁移,那么猜测是否正确呢?需要我们进行验证。三次验证是层层递进的,引导学生在“猜”、“算”、“说”的过程中理解和掌握被除数、除数、商他们之间的变和不变的规律,培养了学生认真观察、敢于猜测、举例验证、得出结论的数学学习的方法。借助规律的发现培养学生的探究意识和能力。
这节课主要抓住两个切入点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习欲望,提出猜测,进行探究学习;二是通过小组学习活动,吧猜测——举例验证——得出结论的数学方法渗透给每一个学生,培养学生的自主探究、自主交流的能力。
这节课用了连着的两个课时,如果让我重新上这节课,我会把商变化的规律和商不变的规律分开来上,充分地联系更多的生活实际,引导学生更深层次地去发现理解商的变化规律。
11、《商的变化规律》教学反思
“商的变化规律”是人教版四年级上册第五单元教学内容。教材内容分两部分呈现,第一部分是商的变化规律,第二部分是商不变规律。在呈现商的变化规律时,教材的呈现方式只呈现了两组式题,让学生计算下面两组题,你能发现什么?而把重点放在商不变规律的探究上。
但实际教学中,商的变化规律才是难点,学生更不容易发现与表述,相对来说,商不变规律更容易探究,也更容易表述。所以在设计时我采用三个层次,扶放结合,以使学生充分地理解商的三个变化规律。抓住“什么没变了,什么变了,怎么变的”这一主干线,在揭示第一组规律时采取教师引导学生观察得出结论的方法,而在后面两组探究规律教学时则完全放手让孩子们自己迁移前方法主动去观察,并口述规律,得出结论,充分发挥师生双主体作用。但在实际教学过程中仍有许多的环节处理得不够得当,导致学生的体验不深刻,教学时间不够,第三组规律没有来得及探究。
反思有以下几点欠妥:
一、让学生举的例子太少,学生感悟得不深刻。
本节课在积的变化规律的基础上,学生对乘法中各个量之间的关系及其变化规律有了感知,有一部分同学能够很快迁移过来,但也有一部分同学不能或不会迁移过来,因此,不能让一部分同学的回答来代表全体同学的回答。而是让他们回答过后,多让其他的同学来说说相关量的变化规律。可以同桌说,说的时候可以让他们按照一定的格式。
在学习商不变的规律时,让学生通过猜想,被除数与除数怎么变化,商才会不变?学生通过之前的学习,能够很快地举例加以验证,但我由于时间关系,没有多举几个学生的例子加以说明,让学生说出自己的想法,只是匆匆而过,虽然学生大多能举出例子来加以验证,能够得出:被除数与除数都要扩大或缩小相同的倍数,商才能不变。但因为确少实例的支撑,得出的结论就显得有点苍白,而且对学生印象不够深刻。
二、习题的设计不够精当,难度不当。
本节课是新课,要学习商的三个变化规律,教学的容量是非常大的。因此在练习的设计上不易过多、过难,以使学生不适应。本课在学习完前两个规律后,出示了有关的六道题,主要是被除数与除数、商的之间的变化情况,因为确少了具体的算式的支持,对学生来说比较抽象,因此虽然花费了不少的时间,但效果不够好。
我想作为教师在吃透教材的同时,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,才能使学生少走歪路,学得容易、学得轻松、学得牢固,真正达到减负增效的目的。
12、《商的变化规律》教学反思
本节课,学习了商的变化规律,让学生通过“观察——探索——交流——总结”完成学习任务,让学生在合作交流中互相启发、互相激励、共同发展。在学生获取知识的探索过程中,教师给学生提供了探索的时间和空间,让学生有展示研究成果的机会,体验成果的喜悦,感受自主探究的乐趣,激起学生的学习兴趣。
反思整个教学过程,也存在着明显的不足:首先,在讲解完规律过渡到应用时,衔接不够自然;规律应用的过程中,讲解简便运算后,总结不到位。其次学生没有足够的探究时间。每一个环节看似都很民主,但由于时间的关系,探究时学生还没有进行认真观察、独立思考,教师已经把他们的思维拉了回来。在今后的教学工作中,应扬长避短,精益求精,争取做到更好。