教案

五年级数学上册《点阵中的规律》教案一等奖设计

2023-07-14 09:30:12

  五年级数学上册《点阵中的规律》教案一等奖设计

五年级数学上册《点阵中的规律》教案一等奖设计

1、五年级数学上册《点阵中的规律》教案一等奖设计

  教学内容:北师大版五上第五单元《点阵中的规律》P82-83

  教学目标

  1、在活动中,通过观察前后图形中点的变化规律,推理得出后续图形中点的数量,体会到图形与数的联系,感受数学均衡美。

  2、培养学生推理、观察、概括能力。

  教学重点:引导学生发现与概括规律。

  教学难点:总结概括规律。

  教学过程:

  一、认识点阵:

  师:同学们,你们都知道自然数分成奇数和偶数,最早进行这样的划分的数学家叫毕达哥拉斯,他非常喜欢数学,他研究数学可不是为了考试和分数,就是因为喜欢,他对研究数的特征非常着迷,研究方法也很独特,他是把数想象成小石子或小圆点,摆成图形来研究数。今天我们也来看看吸引毕达哥拉斯的“点阵”和数之间到底有什么样的联系。

  (板书课题:点阵中的规律)。

  二、研究点阵:

  (一)出示点阵,提出问题

  ····

  ·······

  ·········

  ··········

  师:这就是他当时研究过的一组正方形点阵,有规律吗?如果由你来摆这组正方形点阵,你想怎么摆呢?

  (二)探索点阵中的规律

  1、研究正方形点阵的规律

  (1)观察这些正方形点阵,我们可以得到哪些数?拿出草稿本思考并写下来。

  (2)你能写出算式表示点阵中点的个数吗?

  以小组为单位,讨论交流,巡视学生完成情况。

  (3)小组汇报研究结果。

  (4)尝试画出第五个图形,延伸到第六个图形。

  展示学生成果。

  (5)还有不同的算式表示这些点数吗?

  学生思考。

  (6)如果学生回答不出,教师演示摆的方法,从摆法上引导学生用算式表示点数。

  ·····

  ·····

  ·····

  ·····

  ·····

  (7)小结:摆法不同,得到的算式也不相同,每组算式的特点,也就是正方形点阵的规律。有均衡的,有对称的,这就是数学之美。

  2、研究长方形的点阵规律

  (1)出示P83“试一试”第一题图

  ·····

  ·········

  ············

  ··············

  (1×2)()()()

  (2)师:你能找出这些长方形点阵有什么规律吗?

  你能画出第五个点阵吗?

  (3)小组讨论、交流。

  (4)汇报小组的发现,展示所画的第五个点阵。

  师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵。

  3、研究三角形点阵的规律

  (1)出示三角形点阵图

  ·

  ···

  ······

  ··········

  (1)(3)(6)(10)

  (2)师:①这是一组什么形状的点阵?

  ②你能用算式表示你发现的规律吗?

  ③根据点阵规律,画出第五个点阵。

  (3)展示根据你发现的规律画出的第五个点阵。

  (三)小结:

  其实,点阵是灵活多样的,每个点阵都有自己的规律,只要我们找到规律,就能推出后面点阵的点数。借助点阵图,不同的观察方法,可以得到不同的数的规律,正所谓“远看成岭近成峰,远近高低各不同”。

  三、解决点阵问题:

  (一)学生观察课本P83练一练第2题图,小组内说说他们的规律,然后小组合作画出下一个图形。

  (二)汇报,展示,说说规律。

  四、设计点阵:

  (一)师:刚才,我们共同研究了一些点阵的规律。现在,你想自己设计一个点阵吗?接下来,我们就以小组为单位,开展一个点阵设计大赛,好吗?

  (二)出示要求:

  点阵设计大赛:

  1、设计时间:5分钟

  2、设计要求:

  (1)小组合作,共同设计一幅有规律的、美观的点阵图,画出前4个点阵,并用算式表示每个点阵的数量。

  (2)每组派代表说明设计的方法及点阵中的.规律,并展示作品。

  小组内自由设计,展示。

  五、感受点阵:

  师:同学们个个都是个出色的小设计师!点阵的运用,在生活中也十分常见。比如:我们常玩的五子棋,围棋,跳棋都是点阵的运用。一些大型活动的展示标志,广场上美丽的花坛,由点阵构成的各种图案等等。可以说,生活中,处处离不开点阵的规律,离不开数学的知识。那么,就让我们用希腊数学家普洛克拉的一句话结束今天的学习:

  哪里有数学,哪里就有美!数学美把自然规律抽象成一幅简洁准确的图像。

  ——古希腊数学家普洛克拉

2、五年级数学上册《点阵中的规律》教案一等奖设计

  [教学目标]

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、帮助学生建立数学模型,从直观的操作中发现一些规律。

  [教学重、难点]帮助学生建立数学模型,从直观的操作中发现一些规律。

  [教学过程]

  一、探索与发现

  1、指导学生观察书上提供的图形的.基本形状。

  2、指导学生观察前后图形点的个数是如何增加的。

  3、指导学生观察前后的算式。

  4、小结:发现的规律

  二、试一试:

  第一题:先让学生独立思考,然后组织学生进行交流。

  第二题:让学生独立完成,并交流发现的规律。

  第5课时

  [教学内容]整理与复习(三)(第84-85页)

  [教学目标]

  1、通过整理复习对所学知识进行归纳总结。

  2、通过整理复习巩固所学知识。

  [教学重、难点]培养总结、归纳能力。

  [教学过程]

  一、整理复习组合图形面积

  主要知识:组合图形面积的计算和不规则图形面积的计算。

  归纳基本的解题思路:举例说明“分割”、“添补”法的适用对象。

  二、整理复习分数加减法

  主要知识:异分母分数的加减与实际应用,分数加减法的混合运算,分数与小数的互化。

  归纳基本的计算方法。

  三、练一练:

  第2题:学生独立完成

  第3-6题

  可以让学生自己画线段图进行分析解答。

3、五年级数学上册《点阵中的规律》教案一等奖设计

  教学目标:

  1、能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;

  2、发展归纳与概括的能力;

  3、了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  引导学生发现和概括点阵中的规律。

  教学难点:

  寻求多种解决问题的方法,体会图形与数的联系。

  教学过程:

  一、创设情境,生成问题

  1、观察图形中的规律

  上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?

  (出示幻灯片3)3:生观察说规律,可提示,师总结)

  2、观察一组数的规律。

  看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 …)

  如果有困难不能出色完成,那我们今天就来一起研究,从而导入

  3、出示点子图

  同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)

  好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形——点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!

  二、探索交流,解决问题

  1、渗透不同的观察方法

  (1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。

  (2)指名说怎么观察的?它们之间有什么变化?

  (副板书:横竖看、斜着看、拐弯看)

  (3)设问,那第5个点阵有多少个点?请画出此图形。

  2、小组探究

  同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。

  合作任务

  1、选择一种观察顺序,用线条分一分这几个图中的点。

  2、根据划分的结果写出算式来表示这几个数。

  3、想一想,你们从中发现了什么规律?

  1=()4=()9=()16=()

  (1)学生分组探究,师巡视

  (2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)

  ①生展示分法、算式和规律——其他组补充——总结规律

  ②学生说算式师板书

  ③拓展a×a

  第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书5×5)第10个呢?

  后两种:下一个图形的算式是什么?(副板书下一个图形的算式)

  算一算结果是25吗?

  ④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!

  3、小结

  同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。

  4、揭示点阵

  那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)

  点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。

  三、巩固应用,内化提高

  (一)试一试

  怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。

  1、观察下列点阵,你能根据规律画出下一个图形吗?

  请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)

  生画——展示:说明为什么这样画?(有不同的想法吗)

  2、下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。

  这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)

  生做——展示算式——拓展下一个,你能画出地5个图形,再来研究第4个图形。

  (拓展)你还有什么发现?展示幻灯片11。

  除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)

  (二)拓展延伸

  出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?

  我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。

  对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。

  四、回顾整理,反思提升

  1、同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)

  2、你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。

  板书设计:

  点阵中的规律

  1、正方形点阵

  2、长方形点阵

  3、三角形点阵

  4、其它点阵

  小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,

  感受数学文化的魅力,同一问题有不同的思路和解决方法。

4、五年级数学上册《点阵中的规律》教案一等奖设计

  教学内容:

  北师大版小学数学五年级上册第82——83页的内容。

  教学目标:

  1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。

  2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。

  3、培养学生观察、概括与推理的能力。

  4、了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  通过观察活动,引导学生探索发现“点阵”中隐藏的规律。

  教学难点:

  能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。

  教学准备:

  (师)多媒体课件;(生)彩笔。

  教学过程:

  一、谈话引入

  (老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)

  二、探究正方形点阵中的规律

  1、探究正方形点阵的规律。

  (1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。

  教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?

  (随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)

  (2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?

  (学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)

  (3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。

  (学生独立画出第五个5×5的点阵图)

  (4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?

  (结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)

  小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?

  (学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)

  小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。

  2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。

  (1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?

  学生会有如下发现

  ①是用折线划分开的。

  ②每条线内的点分别是1、3、5、7、9。

  ③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。

  (2)如果把每条线所包围的点子数记下来,如何用算式来表示?

  第一条线:1 = 1;

  第二条线:1+3 = 4;

  第三条线:1+3+5 = 9;

  第四条线:1+3+5+7 = 16;

  第五条线:1+3+5+7+9 = 25;

  (3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)

  (第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)

  (4)思考:表示这个正方形点阵的点数的算式有什么特点?

  (这个点阵的点子总数可以看作是连续奇数的和。)

  (5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?

  1+3+5+7+9+11 = 36;

  (6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?

  学生的划分有以下几种

  ①横向划分:用算式表示为5+5+5+5+5;

  ②竖向划分:用算式表示为5+5+5+5+5;

  ③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;

  至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?

  学生的发现如下:

  算式里的数是5;

  从1开始加到5再加回到1;

  这个算式是两边对称的;

  这个点阵的点数是中间那个数字5乘5的积;

  教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?

  (在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)

  三、延伸应用,形成策略

  1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?

  (学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)

  2、请大家尝试运用前面学会的方法探究长方形点阵规律。

  (1)小组合作研究:如何用算式表示每个长方形点阵的点子数?

  学生通过讨论很快达成共识

  1×2;2×3;3×4;4×5;

  (2)请你独立画出第五个长方形点阵并用算式表示出点数。

  (学生独立画图并写出算式,互相交流。)

  算式表示为:5×6;

  (3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?

  (学生的发现为:乘法算式中的第二个因数总是比第一个因数多1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)

  (4)照这样继续写,你能写出第n个长方形点阵的点数吗?

  学生可以很顺利地写出:n×(n+1)。

  3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求

  (1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。

  (2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。

  (学生活动)

  全班交流

  划分一:横向划分,1+2+3+4+5=15;

  划分二:竖向划分,1+2+3+4+5=15;

  划分三:斜向划分,1+2+3+4+5=15;

  划分四:折线划分,1+5+9=15;

  (对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)

  4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?

  学生交流

  仔细观察点阵的形状;

  数清每一行的点子数;

  看清前后两个点阵的变化……

  (在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)

  四、课堂总结

  1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?

  学生交流

  五子棋、阅兵式的方队、节日的花坛……

  2、课后继续搜集点阵的相关资料,下节课继续交流。

  (在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)

5、五年级数学上册《点阵中的规律》教案一等奖设计

  教学内容:

  北师大版小学数学五年级上册第82——83页的内容。

  教学目标:

  1、结合具体的图形,明确什么是“点阵”,了解点阵的基本知识。

  2、能在具体的观察活动中,发现点阵中隐藏的规律,体会图形与数的联系。

  3、培养学生观察、概括与推理的能力。

  4、了解数学发展的历史,感受数学文化的魅力。

  教学重点:

  通过观察活动,引导学生探索发现“点阵”中隐藏的规律。

  教学难点:

  能从不同的角度观察到点阵图形的不同排列规律,并能把观察到的规律用算式表示出来。

  教学准备:

  (师)多媒体课件;(生)彩笔。

  教学过程:

  一、谈话引入

  (老师在黑板上画点)今天给大家请来了一位图形朋友——点,不要小看了这个小小的点,早在2000多年前,古希腊的数学家们就是从这样一个小小的点开始研究,发现了由许多个这样的点组成的点子图形中的规律,还给这些图形取了一个好听的名字,叫点阵。同学们想不想过一把当数学家的瘾,自己来寻找这些规律?今天,我们就一起来探究点阵中隐含的规律。(板书课题:点阵中的规律)

  二、探究正方形点阵中的规律

  1、探究正方形点阵的规律。

  (1)我们一起来看看数学家们当年研究的点阵图,边看边说出各个点阵的点子数。

  教师依次出示前四个正方形点阵图,并逐步引导学生想像、猜测:下一个点阵图会是什么样子呢?

  (随着点阵图的依次出现,学生的思维逐渐活跃,当第三个点阵图出现的时候,学生已经忍不住地说出了点数。说明学生已经发现了正方形点阵中的规律。但这时,教师没有急于让学生发表自己的看法,而是给学生留出了完善自己想法的时间,同时也暗示学生:规律的呈现不能依靠一个或几个图形来归纳,应该有耐心地继续自己的观察活动。)

  (2)除了能说出各个点阵的点数之外,仔细观察点阵图:你还有什么其它的发现?

  (学生能够发现各个点阵的形状是正方形的,还能用1×1、2×2、3×3、4×4这样的算式来表示每个点阵的点数。)

  (3)根据刚才发现的规律,想:第五个点阵是什么样子,独立画出来,并用算式表示点数。

  (学生独立画出第五个5×5的点阵图)

  (4)思考:照这样的规律继续画下去,第100个点阵的点数如何用算式来表示?第n个呢?

  (结合发现的规律,引导学生逐步完善自己的想法,建立总结正方形点阵规律的模型。)

  小组讨论:你觉得每个正方形点阵的点子总数与什么有关系?

  (学会用简单的语言表述自己的想法,使得初步的形象感知得到提升)

  小结:每个正方形点阵的点子总数可以看作是一个相同数字相乘的积,这个数字与点阵的序号有关,与每个正方形点阵每排的点子数也有关系。

  2、刚才我们研究了一组正方形点阵中隐含的规律,那么对于同一个点阵来说,如果划分的方法不同,所呈现的规律也就不同。

  (1)请大家仔细观察第五个正方形点阵中点的划分方法,你能发现什么规律?

  学生会有如下发现

  ①是用折线划分开的。

  ②每条线内的点分别是1、3、5、7、9。

  ③这个正方形点阵的点数就可以表示为:1+3+5+7+9=25。

  (2)如果把每条线所包围的点子数记下来,如何用算式来表示?

  第一条线: 1 = 1;

  第二条线: 1+3 = 4;

  第三条线: 1+3+5 = 9;

  第四条线: 1+3+5+7 = 16;

  第五条线: 1+3+5+7+9 = 25;

  (3)每条线所包围的点子数与前面研究的一组正方形点阵的点子数有什么关系?(正好是第一到第五个点阵的点子数。)

  (第二、三个问题需要老师引导,学生自己难以发现,尤其是第三个问题,学生很难想到它们和开始时依次出现的几个正方形点阵的点数之间的关系。当学生想不到这种联系时,是否一定要引导?)

  (4)思考:表示这个正方形点阵的点数的算式有什么特点?

  (这个点阵的点子总数可以看作是连续奇数的和。)

  (5)如果按这样的划分方法划分第六个正方形点阵,它的点数该如何表示?

  1+3+5+7+9+11 = 36;

  (6)前面老师是把这个5×5的正方形点阵用折线进行了划分,你们还有哪些不同的划分的方法?在用算式表示上有什么规律?

  学生的划分有以下几种

  ①横向划分:用算式表示为5+5+5+5+5;

  ②竖向划分:用算式表示为5+5+5+5+5;

  ③斜向划分:用算式表示为1+2+3+4+5+4+3+2+1;

  至于前面两种方法,都可以简单地表示为:5×5;重点引导学生讨论第三种划分方法,观察这个算式,你们发现了什么?

  学生的发现如下

  算式里最大的数是5;

  从1开始加到5再加回到1;

  这个算式是两边对称的;

  这个点阵的`点数是中间那个数字5乘5的积;

  教师引导:照这样的规律类推,第六个正方形点阵的点数如何表示?第9个呢?第n个呢?

  (在这里把寻找不同划分方法的任务交给学生,既是学生前面探究过程思维的延续,又体现了学生学习的自主性,还用另一种方式解读了“练一练”中的第一题。培养了学生从不同的角度去发现问题,总结概括规律的能力。)

  三、延伸应用,形成策略

  1、除了我们刚才研究的正方形点阵,请大家猜猜看,还会有什么形状的点阵呢?

  (学生列举了长方形点阵、三角形点阵、圆形点阵、椭圆形点阵等等。)

  2、请大家尝试运用前面学会的方法探究长方形点阵规律。

  (1)小组合作研究:如何用算式表示每个长方形点阵的点子数?

  学生通过讨论很快达成共识

  1×2;2×3;3×4;4×5;

  (2)请你独立画出第五个长方形点阵并用算式表示出点数。

  (学生独立画图并写出算式,互相交流。)

  算式表示为:5×6;

  (3)思考讨论:你们觉得自己所写的算式中的数字与图形中的点子之间有什么关系?

  (学生的发现为:乘法算式中的第二个因数总是比第一个因数多 1,第一个因数是长方形点阵的竖排点数,第二个因数是长方形点阵的横排点数。并没有发现第一个因数与点阵序号间的关系,因此,当要求他们写出18个点阵的点数时,出现了两种不同的答案:17×18、18×19。在争论各自的理由时,学生的注意力才联系到了点阵的序号与算式的关系,从而确定了正确答案。)

  (4)照这样继续写,你能写出第n个长方形点阵的点数吗?

  学生可以很顺利地写出:n×(n+1)。

  3、看来对于任何一个点阵,只要我们认真观察研究,总能发现其独特的规律。在小组内研究三角形点阵中的规律,要求

  (1)个人思考活动:观察给出的四个三角形点阵的规律,画出第五个三角形点阵。

  (2)小组讨论:对自己画出的第五个三角形点阵进行划分,你能想到哪些不同的划分方法?分别用算式表示点数。

  (学生活动)

  全班交流

  划分一:横向划分,1+2+3+4+5=15;

  划分二:竖向划分,1+2+3+4+5=15;

  划分三:斜向划分,1+2+3+4+5=15;

  划分四:折线划分,1+5+9=15;

  (对于前面的三种划分方法,都在我的预设之内,学生到此,已经很轻松地用语言表述出自己的想法:这样的三角形点阵的点数是从1开始的连续自然数的和。而对于第四种划分方法,是我没有想到的。有一个孩子却用非常强烈地要求,表达了自己的这种划分方法,并且说出了这个算式依次递加4的规律。)

  4、同学们真了起!真正具有未来数学家的风范,用自己的聪明才智,发现并总结了各个不同的点阵图中隐藏的规律。那么你觉得应该从哪些方面来探究点阵的规律?

  学生交流

  仔细观察点阵的形状;

  数清每一行的点子数;

  看清前后两个点阵的变化……

  (在这里不需要学生说出多么专业的、深奥的数学原理,只是引导学生对自己探究性学习方法的一个总结,尽管语言可能不够简练,总结不够到位,只要学生用自己的语言在表述,就是对学生思维训练的一个提升,一种飞越。)

  四、课堂总结

  1、点阵的知识在生活中有着广泛的应用,比如北京奥运会开幕式上的“击缶表演”、“太极表演”等,都是把一个人看作了一点,来排列有规律的队形。你还知道什么地方运用了点阵的相关知识?

  五子棋、阅兵式的方队、节日的花坛……

  2、课后继续搜集点阵的相关资料,下节课继续交流。

  (在这里,把学生的课堂学习延伸到生活,链接到学生已有的相关生活经验,然后让学生在生活中继续寻找哪里用到点阵的知识,体现了数学与生活的密切联系,数学来源于生活,又应用于生活。)

6、五年级上册《点阵中的规律》的数学教学反思

  在执教过后,我认为本课实现了预期的教学目标,是一堂扎实有效的数学课,成功之处主要有以下几点:

  1、 准确定位学习起点,保证学生有效起步。

  维果茨基认为,教学必须立足于学生的最近发展区,才能促进学生的发展。作为学习起点的数学活动,必须是不用老师教,每个学生都能达到的学习水平。教师紧扣教材,把教材中探索正方形点阵的第一问和第二问当成学生的学习起点,让学生自主解决,探索规律,保证了每一位学生都能尝到成功的喜悦,为下面的学习做好知识上的、心理上的铺垫。

  2、 以探索活动为主线,实现学生自主学习。

  著名数学家弗赖登塔尔认为“数学是一种活动”,据此原理,教师设计了五个层层递进、环环相扣的数学探索活动,活动目的明确,由浅入深。学生在第一个数学探索活动取得成功时,教师十分重视引导他们总结学习方法,正方形点阵的成功探索为长方形点阵和三角形点阵的探索提供了活动经验、方法步骤,学生的自主学习便有了依据、有道可循。

  3、 设计精心提问的问题,引导学生有效探究。

  课堂上的提问是否有效往往决定着课堂的实效性。在每一个探索活动中,教师都精心设计了符合学生学情的提问。如第一个探索活动中“交流:(1)为什么可以用乘法算式来表示点阵中的点数?(2)在解答过程中,你认为正方形点阵有什么规律?”第三个探索活动中“你能尝试用不同的形式划分正方形的点阵,看看有什么新发现吗?”这样的.课堂提问适时,能促进学生思考,利于学生进一步探究。

  4、 注重数学思想渗透,发展学生能力。

  本课主要引导学生体会“数形结合”的思想。华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”教师在导入设计了“形可以表示数,用形还可以研究数” 的环节,引导学生初步感受形与数的关系,再通过观察一列数与观察拐弯分的正方形点阵,让学生再次感受数与形的结合,感受到形的直观,发展数感和空间想象力。

  有缺憾的课堂才是真实的课堂。这堂课的不足主要有:

  1、 在探索出正方形点阵的三个不同的规律后,教师和学生一起对这三个规律的探究过程做了回顾,却忘了在三个算式之间划上等号。

  2、在探究正方形点阵的第二个规律时,教师采用讲解的方式直接出示拐弯分的第五个正方形点阵,省去了学生探究的时间,当时是考虑全然放手让学生自主探究,难度太大,且未必能有所发现,即使有所发现,也将是个别学生的发现,更多的学生的学习将是低效甚至是无效的。但如果教师设计了学生的反思活动,将更有利于学生的“再创造”。如教师可提出要求:“请画出每次增加的点数对应的正方形点阵中是哪几个?”这样,学生便能通过动手画一画,画出拐弯分的正方形点阵来,而非教师直接出示,更能让孩子们感受到“我是创造者”的喜悦。

7、《点阵中的规律》数学五年级上册教学反思

  本节课是一节比较独立的活动课,是《课标》中的数形结合思想在教材的具体体现。我教学确定的重点是:引导学生发现和概括点阵图中的规律,难点是:从多角度去思考解决问题的方法,感受数形之间的联系。在整个教学活动中,我采取教师引导,学生合作学习,大胆交流为主的学习方法和教学方式。

  课前引导:利用记忆电话号码,让孩子们大胆参与课堂,激发学生学习数学的兴趣,以及动脑的好习惯。并夸张的宣扬数学之美,数学来源于生活,并且指导生活,给我们的生活带来太多的美,太多的享受,太多的乐趣。

  新授:一共分为三个角度。

  1.直接用正方形的点阵,让学生观察,并且计算。很容易就得出点阵的数量,在这样的基础上,拓展6个,7个,8个…100个,第N个?因为第二个角度的需要,我让学生画出第五个点阵,并计算其数量。

  2.从另外的角度观察,将正方形的点阵,数着引导,看看又能找出什么规律。这算是本节课的难点的体现,如果在这一节课能有效把握学生的思维过程,并能合理引导学生参与课堂,把其中的规律找出来,如果能很好的表达那已经是很难的了。通过以前教学经验,我发现学生在发现规律的时候:1+3+5+7时,孩子们总是认识到:每次增加2,而不是说增加3,增加5,这样连续奇数相加的认识。在这个角度我一直犯难,特别是去年在上这一节课的时候,不知道怎样去引导,自己很紧张,在这里浪费的很长的`时间,并且学生还没有掌握其中的规律。导致于后面内容不能完成教学。今天的课,我在学生讨论的时候,主动参与学生的讨论,感觉学生还是能很好的认识,我就让孩子停止交流,结果一位学生站起来还是说出了:“减2”的观点,我以为这会给其他学生一次思维的撞击,没有想到:全体同学都同意这位学生的观点,让我不知所措,我只有临时安排学生再次讨论。这次我就有意思的去引导个别小组:从1开始连续几个奇数相加。这个时候需要充分与图形合理的结合起开,。仔细观察图形的变化规律。

  3.斜着观察图形的规律。我巡视过程中发现:基础不是很好的学生都能把每个点阵图形的规律找出来,并且写出算式:1+2+1,1+2+3+2+1,……

  4.小结前面三维观察的结果。感受规律带来的结果。

  最后我设计了5个练习,有独立思考的,有合作的,有动手的,学生参与率还比较高,达到的效果还比较明显。

  总结:其实在两千多年前,希腊数学家们已经利用图形来研究数。由于图形具有直观形象的特点,会使抽象的数学问题变得生动具体,是我们学习数学的一大法宝,我们以后在研究数学问题时,要学会利用图形来帮助解决。

8、五年级数学上册《点阵中的规律》教学反思

  是北师大版五年级上册第82到83页尝试与猜测部分的教学内容。从五年级上册的教学内容看,本课属于一个独立的教学内容,但从整个小学教学内容看,本课是在四年级下册探索数图形、摆图形所需小棒数量的规律的基础上进一步探索数与形的规律,为今后学习五年级下册的探索物体堆放中的规律、六年级上册的探索数与形的.规律、看图找关系打下基础。

  本课教学体现了如下特点

  1.从问题出发,引导探究。问题是探索的基础。上课伊始,我就提出了两个问题:⑴每个点阵可以看成什么图形?⑵每个点阵有什么规律?怎样用算式表示出来?让学生在独立观察的基础上小组讨论,寻找规律。

  2、鼓励学生用自己的思考方式发现规律,如在探究正方形点阵的规律过程中,学生们能够根据自己的观察与思考寻找到其中的点阵规律,虽然,在 “1×1,2×2,3×3,4×4,……n×n”的方法与“1,1+3,……,1+3+5+7+……+(2n-1)”的方法思考方式不同,但对学生而言,都是他们自主探索的结果。因此,教师在教学中充分肯定不同学生的探索成果,体现尊重学生个性发展的教学理念。

  3、教师在教学设计中充分体现了“数形结合”和转化的思想,例如,学生在找规律的过程中把点阵中点子的数量与正方形的面积计算联系起来,这种联想,对于找到解决问题的突破口是非常有利的。因此,在教学中有意识地渗透这种思想,对提高学生解决问题的能力有较大的帮助。

相关文章

推荐文章