教案

小学五年级数学《整除、约数和倍数》教案一等奖设计

2023-07-15 13:55:13

  小学五年级数学《整除、约数和倍数》教案一等奖设计

小学五年级数学《整除、约数和倍数》教案一等奖设计

1、小学五年级数学《整除、约数和倍数》教案一等奖设计

  教学目标:

  使学生在理解自然数,整数意义的基础上理解整除。约数和倍数的意义。能正确的判别整除和除尽,约数和倍数可含义,为学生求最带公约数和最小公倍数大好基础。

  教学过程:

  一、复习

  1、学生回答

  (1)什么叫做自然数?

  (2)哪些是整数?

  (3)整数和自然数有什么关系?

  二、引入新课

  1、观察除法算式

  15÷3=31.5÷3=0.5

  24÷4=63.6÷09=4

  80÷20=416÷3=5……1

  2、找出左边三题和右边三题有什么不同?

  3、回答提问

  左边:被除数、除数、商都是自然数

  右边:被除数、除数、商是小数且有些还有余数

  4、揭示整除的意义

  5、讲解约数也倍数两个概念。

  6、例题讲解

  15除以5,商是3,没有余数----15能被5整除

  如果数a能被数b整除,a就叫b的倍数,b就叫做a的约数。

  7、整除与除尽的概念区别

  除尽包括整除,能除尽的不一定能整除,能整除的一定能除尽。

  三、巩固练习

  四、总结布置作业

  反思:数的整除应强调以下几点:

  1、数的整除里的'数指自然数。

  2、只有当被除数和除数、商都是自然数的时候,且没有余数才能说整除,

  3、应让学生通过多种渠道知道倍数和约数的概念。因为这在以后的教学中是非常重要的。

  4、区别整除与除尽的关系。应通过多种例子让学生真正的了解。

2、小学五年级数学《整除、约数和倍数》教案一等奖设计

  教学目标:

  1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。

  2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。

  教学过程:

  一、准备题

  1、什么是整除?

  2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?

  二、教学例118和24的约数各有哪几个?

  1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?

  找18的约数,就是看18能被哪些自然数整除:18除以()=()

  2、找约数的方法;

  A、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。

  1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18

  B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。

  18/1=18(1和18都是18的约数)

  18/2=9(2和9都是18的约数)

  18/3=6(3和6都是18的约数)

  18/4不能整除

  18/6=3除数已比商大。

  18的约数按顺序排列是:1、2、3、6、9、18。

  3、用同样的方法找24的约数。

  24/1=24(1和24都是24的约数)

  24/2=12(1和24都是24的约数)

  24/3=8(1和24都是24的约数)

  24/4=6(1和24都是24的约数)

  24/5不能整除

  24/6=4除数已比商大。

  4、观察约数的特征:

  18、24的约数也可以分别用图表示

  思考:根据上面的图回答

  1、约数中最小的一个是什么数?(1)

  2、约数中最大的一个是什么数?(本身)

  3、一个数的约数的个数是有限的。

  1、2、3、6、9、18

  1、2、3、4、6、8、12、24

  18的约数24的约数

  5、练一练

  找15和36的约数各有哪几个?

  三、教学例23和5的倍数各有哪些?

  1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以

  3的倍数有3、6、9、12、15、18、21、24、27……

  5的倍数有5、10、15、20……….

  3、6、9、12、15、18……

  2、3、5的倍数也可以分别用图表示:

  5、10、15、20、25、30……

  3的倍数5的倍数

  观察上图发现:(1)一个数最小的倍数是什么数?(本身)

  (2)一个数有没有最大的倍数?(没有)

  (3)一个数的倍数的个数是无限的。

  2、练一练

  (1)50以内4、9的倍数各有哪几个?

  四、巩固练习

  1、在下面的圈里填上适当的数

  2、在4、8、16、32、40、48、64、80这几个数中,

  80的.约数有(4、8、16、40、80),

  8的倍数有(8、16、32、40、48、64、80)

  3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?

  32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。

  五、总结布置作业

  反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:

  1、约数中最大的和最小的约数是什么。

  2、倍数中最大的和最小的倍数是什么

  3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。

  4、如何找出所有的约数,而且确认已全部找出的方法应加强。

3、小学五年级数学《整除、约数和倍数》教案一等奖设计

  教材分析

  约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

  教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

  学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

  教法建议

  约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

  复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

  约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的'找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

  教学设计示例

  约数和倍数的意义

  教学目标

  1、掌握整除、约数、倍数的概念.

  2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

  教学重点

  1、建立整除、约数、倍数的概念.

  2、理解约数、倍数相互依存的关系.

  3、应用概念正确作出判断.

  教学难点

  理解约数、倍数相互依存的关系.

  教学步骤

  一、铺垫孕伏(课件演示:数的整除 下载)

  1、口算

  6÷5 15÷3 23÷7

  1.2÷0.3 24÷2 31÷3

  2、观察算式和结果并将算式分类.

  除尽

  除不尽

  6÷5=1.2 15÷3=15

  1.2÷0.3=4 24÷2=12

  23÷7=3……2

  31÷3=10……1

  3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

  4、寻找具有整除关系的算式.

  板书:15÷3=515能被3整除

  5、分类除尽

  除不尽

  不能整除

  整除

  6÷5=1.2

  1.2÷0.3=4

  15÷3=15

  24÷2=12

  23÷7=3......2

  31÷3=10......1

  二、探究新知

  (一)进一步理解”整除“的意义.

  1、整除所需的条件.

  (1)分析:24能被2整除,15能被3整除;

  23不能被7整除,31不能被3整除;(商有余数)

  6不能被5整除;(商是小数)

  1.2不能被0.3整除;(被除数和除数都是小数)

  (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

  a、被除数和除数(0除外)都是整数;

  b、商是整数;

  c、商后没有余数.

  板书:整数整数整数(没有余数)

  15÷3=5

  2、用字母表示相除的两个数,理解整除的意义.

  (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

  (板书:a÷b)

  学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

  (板书:a能被b整除)

  (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

  学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

  3、反馈练习.

  (1)下面的数,哪一组的第一个数能被第二个数整除?

  29和336和121.2和0.4

  (2)判断下面的说法是否正确,并说明理由.

  a.36能被12整除.()

  b.19能被3整除.()

  c.3.2能被0.4整除.()

  d.0能被5整除.()

  e.29能整除29.()

  4、”整除“与”除尽“的联系和区别.

  讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

4、小学五年级数学《整除、约数和倍数》教案一等奖设计

  教学内容

  苏教版九年义务教育小学数学第十册第39-40页,练一练,练习七第1-4题。

  教学目标

  1、使学生认识整除的意义,认识约数和倍数,能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。

  2、培养学生观察、比较、综合、概括等思维能力,培养学生依据概念进行判断的能力。

  教学重难点

  1、能判断一个除法算式是不是整除的算式,并能说出两个数是否存在约数和倍数关系。

  2、区别除尽和整除,倍和倍数概念间的异同,倍数和约数相互依存关系。

  教具准备

  口算卡、小黑板

  教学过程

  一、随机口算

  15÷3=10÷3=1.5÷3=28÷7=20÷7=

  28÷0.7=33÷11=35÷11=3.3÷1.1=

  二、建构概念

  1、认识整除

  (1)、根据商的特点,你能将这9道算式分分类吗?

  除尽(没有余数)除不尽(有余数)

  (2)、除尽的这类算式还能再分一分吗?

  除尽

  整除不能整除

  师指出:像被除数、除数和商都是整数且没有余数时,就是一个整除算式。

  (3)、你能再举出一些整除的算式吗?师相机板书

  (4)、设疑:太多了,说不完!谁有办法把大家的整除算式概括成一个整除算式?

  (5)、启发:请字母来帮忙啊,被除数用a,除数用b,商用c,怎么表示?

  师板书:a÷b=c

  追问:这个整除算式中,a,b,c各有什么特点?(都要是整数,没有余数,b≠0)

  (6)、指出:当a、b、c都是整数且没有余数时,就是一个整除的算式。由此便可以说:

  a能被b整除,b能整除a

  (7)、学会叙述:例如15÷3中,哪个数能被哪个数整除?还可以怎么说?

  选一道算式,像这样说给同桌听。

  (8)、判断练习P40练一练

  2、认识约数和倍数

  (1)、师指出:当数a能被数b整除时,a就叫做b的倍数,b就叫做a的约数。(板书课题)

  (2)、例如“因为15能被3整除,3能整除15,所以,15是3的倍数,3是15的约数”这句话你会说吗?

  请同学们选一个整除算式,也可以自己写两个数,同桌互相说一说。

  (3)、判断

  ①因为1.5÷0.5=3,所以1.5是0.5的倍数。()

  ②因为9÷6=1.5,所以9是6的1.5倍。()

  ③因为36÷6=6,所以36是倍数,6是约数。()

  ④5是5的约数,5又是5的'倍数。()

  (4)、填空,使它成为整除算式。

  ()÷1=()0÷()=()

  师:能填的完吗?填不完是因为怎样的数都可以?

  任何整数任何非零整数

  师:因此,我们可以说,任何整数都是1的倍数,1是任何整数的约数。0是任何非零整数的倍数,任何非零整数也都是0的约数。为了方便,我们在研究约数和倍数时,所说的数一般指不是零的自然数。

  三、巩固练习

  P431-4机动

  四、小结应用

  1、学了这节课,你有什么收获?

  2、应用这些知识,你能从下面这组数中,任选2个数字说句话吗?

  4530532

5、小学五年级数学《整除、约数和倍数》教案一等奖设计

  教学目标

  (1)使学生初步了解公约数、最大公约数和互质数的概念。

  (2)学会求几个数的公约数和最大公约数。

  教学重点、难点

  重点:求几个数的公约数和最大公约数

  难点:判断互质数

  教具、学具准备

  教学过程

  备注

  一、复习准备

  1、指名板演

  18和30的约数各有哪几个?

  18的约数有:

  30的约数有:

  2、口答:

  (1)什么叫做约数?

  (2)下面各数中,哪些数有约数2?哪些数有约数3?哪些数有约数5?

  901117284108115

  (3)说出下面每一个自然数的全部约数。

  17151237

  这几个自然数中哪几个是素数?为什么?(出示素数定义)

  二、教学新知

  1、教学新知。

  出示例1(板演题上补充问题)教学。

  (1)教师指出:1既是18的约数,又是30的约数,我们就说1是18和30的公有的约数。

  (2)18和30公有的约数还有哪几个?(板书:18和30公有的`约数有:1、2、3、6。)

  (3)在这些公有的约数中最大的一个公有的约数是几?(板书:其中最大的一个公有约数是6。)

  (4)出示P47图

  (5)归纳:“公有的约数”简称什么数?“最大的一个公有的约数”又简称为什么数?引导学生阅读书上结语。例如:18和30的公约数有1、2、3、6;18和最大公约书是6。

  2、试一试。

  (1)书P47“试一试”填在书上后讲评。紧接着讨论:约数、公约数、

  教学过程

  备 注

  最大的公约数有什么区别?

  (2)18和42这一组数里有没有公约数?2有没有公约数3?有没有公约数5?你是怎么想的?(根据能被2、3、5、整除的数的特点来判断。)

  (3)口答P49第3题。

  3、出示例2教学。

  (1)指一名学生板演,其它填在书上表格当中。

  (2)这几组数的公约数有什么特点?

  (3)小结:公约数只有1的两个数,叫做互质数。(出示定义)例如,互质的两个数有四种情况。边讲边板书:

  ①两个数都是素数。如5和11;

  ②两个数都是合数。如9和16;

  ③一个合数,一个素数。如30和29;

  ④1和另一个自然数。如1和8。

  4、练习、判断:

  (1)指出下面哪一组中的两个数是互质数。哪一组中的两个数不是互质数。为什么?

  8和927和151和72和1513和54和24

  (2)判断。正确的打√,错误的打X。

  ①所有自然数的公约数是1。()

  ②如果两个数是互质数,那末这两个数必定是互质数。()

  ③如果两个数都是素数,那么这两个数必定是互质数。()

  ④相邻的两个自然数都是互质数。

  ⑤两个自然数中有一个数是1,这两个必然是互质数。()

  以上判断正误,要求说出理由。

  (3)讨论:从以上的练习,可以知道,怎样判断两个数是不是互质数?

  三、巩固练习

  P.48第1题、P49第2、6题。

  四、教学总结

  这节课,我们学习了什么,什么叫做公约数、最大公约数和互质数?

  求两个数或三个数的最大公约数,除刚才学过的方法以外,还有一种简便的方法,下节课再学。

  五、作业《作业本》

  从约数着手,层层深入,得出公约数和最大公约数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合思想。从公约数的个数上,引出互质数概念,并引导学生经过探索,得出互质数的组成方式。

  课后反思:教学“求最大公约数”,课本共安排了三个例题及一个“做一做”,教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:“两个数的最大公约数也就是这两个数的差。”教师问:“有什么根据?”学生回答说:首先肯定了学生善于观察和思考的精神,接着又向学生指出:“是巧合呢,还是真有这样的规律存在呢?”学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

6、小学数学五年级下册《因数与倍数》教学反思

  有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。因此,在教学中,我有两点最深的体会:研读教材,走进去;活用教材,走出来。《因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。在以往的教材中,都是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如a÷b=n表示a能被b整除,b能整除a。在此基础上再引出因数和倍数的概念。而现在的人教版教材中没有用数学语言给“整除”下定义,而是利用一个简单的实物图引出一个乘法算式,通过这个乘法算式直接给出因数和倍数的概念。这样编排对于学生来说更容易理解和掌握。因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用一个脑筋急转弯,捕捉生活与数学之间的联系,帮助学生理解因数倍数相互依存的关系。

  教材上,探究因数这部分的'例题比较少,只有一个:找18的因数。根据学生的实际情况,我进行了重组教材,先让学生根据乘法算式“一对对”地找出15的因数,在此基础上再让学生探究18的因数。通过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照一定的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言——打手势,让学生说出30和36的因数,达到了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,符合了学生的认知规律。

  教材在编排上虽然对于学生来说更容易理解和掌握。但这部分内容学生毕竟初次接触,对于学生来说还是比较难掌握的内容。本来计划因数与倍数(12-14页)一节课讲完,实际操作一节课只能揭示出因数与倍数的概念、求一个数的因数的方法、一个数的因数的特征(12-13页)。下课后,与 成老师交流,她与我有同感。可从各种资料上看了许多教学设计,都是在一节课讲3页,我想,新内容概念多,一节课讲完,学生确实吃不消。俗话说:“磨刀不误砍柴工”打好前面的知识基础,第二课时讲求一个数的倍数的方法以及一个数的倍数特征自然可以放手让学生自己去探究,并且还有充足的时间对求一个数的因数的方法、一个数的因数的特征和求一个数的倍数的方法、一个数的倍数特征进行对比,从而强化所学知识。

  所以我认为,课堂容量大就不可避免地造成缺少当堂反馈的时间,过大的容量使学生学的不够深入。我们教师总是想在一节课中让学生掌握尽量多的知识,其实这样反而会减少学生的思考时间,也使老师无法照顾差生,知道差生接受的程度,今后要多思考怎样合理安排。

7、小学数学五年级下册《最小公倍数》的教学反思

  通过教学使学生掌握公倍数和最小公倍数的概念。小学生在理解概念时,往往难度较大。我就出示投影片,利用练习启发学生:从刚才找4的6的倍数,你发现了什么?学生小组进行讨论:公倍数、最小公倍数的`意义,然后汇报。教师出示图表示,引导学生观察:两个数的公倍数有什么特点?有没有最大的公倍数?让学生明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的。因此,两个数没有最大的公倍数。

  理解求最小公倍数的算理时,主要也采用小组合作的形式,使学生学会用一般方法求两个数的最小公倍数。

  通过研究最小公倍数计算方法的算理,提高学生的逻辑思维能力。

  引导学生利用列举法探索新知,培养学生良好的思维品质和科学的思维方法。

  及时巩固练习,有层次,有趣味。

  学生做全堂总结:这节课学习了什么?怎样求两个数的最小公倍数?你还学到了哪些知识?调动学习积极性,学会归纳总结。

8、小学五年级数学下册《3的倍数的特征》教学反思

  《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的`任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

  在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

  这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

  希望以后自己的教学会更扎实起来。

9、五年级数学《能被2、3整除的数》教学反思

  先从旧知识的连接点,为2、5、3整除的数算理打好知识基础。再通过举例观察、思考、研究能被2整除的数的特征,并研究其算理。在研究能被2整除的数的基础上来研究能被5整除的数,放手让学生说。发现10、2、5之间的关系,迁移到100、25、4;1000、125、8……,掌握一类发现数的特征的方法。最后,分析不能通过个位上的数字来判断一个整数能不能被3整整出的原因,深化算理的理解。给学生足够的时间和过程去感悟能被3整除的数的特征。最后解释这种方法的根源——10除以3余1,100除以3余1,1000、10000这样的数除以3都余1。为迁移提供基础。

  (1)抓住知识结构。

  整除是在整数除法的基础上发展而来,整数a除以整数b(b不等于0),除得的商是整数而没有余数,我们就说a能被b整除。整除的问题就可以归结为余数问题,并且正处的很多性质都可以用除法与减法的关系来解释。根据能被10整除的数的特征,只看个位。2和5是10的约数,十位和十位以前的数都表示几个十,这些数除以2或5都没有余数,所以就不用去考虑了,只考虑个位上的数能不能被2或5整除。还发现因为10=2×5,所以判断一个整数能不能被2和5整除的方法与判断一个整数能不能被10整除的方法相同。由此可以迁移到100=25×4,所以判断一个整数能不能被4和25整除的方法与判断一个整数能不能被100整除的方法相同都是看后两位。同样由1000=125×8可以想到能被125和8整除的数的特征。根据10÷3=3……1、100÷3=33……1、1000÷3=333……1;……所以,几个十除以3就与几个一,也就是十位上的数字;几个百除以3就余继各异,也就是百位上的数字。……,所以可以通过把各个数位上数字相加的和能不能被3整除来判断这个数能不能被3整除。同样,10÷9=1……1、100÷9=11……1、1000÷9=111……1、……可以得出能被9整除的数的特征。同样还可以发现能被99、33、11、999、111、333……整除的数的特征。

  知识结构的形成,使学生能够抓住知识间的`内在联系,抓住知识结构中的核心概念,这样就能举一反三,触类旁通,这个过程也就是培养学生的创新能力的过程。另外,通过知识的整理,使学生掌握整理知识的方法,使学生善于发现事物间的关系(这往往是创新的基础),最终通过图表等形式表达出来。这样形象思维和逻辑思维相结合,培养了学生的创新能力。

  (2)抓知识的本质,掌握研究问题的方法。

  数学课学习的是分析、解决问题的方法和思路。本节课注重探究知识的根源研究,弄清现象后的本质,不但总结了判断一个整数能不能被2、5、3整除的数的方法。掌握总结数的特征的方法,用10、100、1000这样的数除以要研究的数,看余数有没有规律,如果有规律,如果有规律在进行具体研究,总结规律。因此,研究知识时,要深入探究,了解知识的本质,做到“知其然还知其所以然”。掌握研究问题的方法。

10、五年级数学下《公倍数和最小公倍数》教学反思

  核心提示:本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发...

  本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2 的倍数,但不是3的倍数,则不行。学生具体感知公倍数的.含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。

  尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。

  纵观这节课,学生学得还是比较轻松,掌握的较好。

相关文章

推荐文章