教案

《梯形面积的巩固练习》教案一等奖

2023-07-15 15:32:12

  《梯形面积的巩固练习》教案一等奖

《梯形面积的巩固练习》教案一等奖

1、《梯形面积的巩固练习》教案一等奖

  教学内容:

  练习十九第5~10题。

  教学目的:

  通过练习,使学生进一步熟悉梯形面积的计算公式,能够比较熟练地计算梯形的面积。

  教具准备:

  将下面复习中的图画在小黑板上。

  教学过程:

  一、复习。

  1.口算:练习十九的第5题。

  2.出示小黑板。

  师:这是一个梯形图,要求它的面积必须知道什么?(学生回答后,让学生到黑板前量出要求这个图形的面积所需要的线段的长。知道了梯形的上底、下底和高,怎样求出它的面积?用哪个公式?(学生回答后,教师板书:

  S=(a+b)×h÷2)

  这个梯形的面积是多少?(学生独立计算)

  二、做练习十九中的题目。

  1.第7题,出示水渠模型,问:

  这是什么模型?它的横截面是什么形?

  渠口的宽可以看成是梯形的什么?渠底的.宽呢?

  渠深可以看成是梯形的什么?

  (学生独立完成填表)

  2.第8题,先让学生读题,教师说明:这是飞机模型中机翼的平面图。它是由两个完全相同的梯形组成,问:

  现在要求这个机翼平面图的面积,应该怎样求?(先求出一个梯形的面积,再乘以2。)

  看一看还有没有其他的算法?(教师提示:因为飞机机翼是由两个完全一样的梯形组成的,如果设想把这个机翼从中间剪开,成为两个完全一样的梯形,再把其中一个梯形经过平移,使两个梯形拼成一个平行四边形,它的底是100毫米加46毫米,高是250毫米。这个平行四边形的面积和我们所要求的机翼平面图的面积相等。)

  3.第9题,让学生独立做,做完后集体核对。

  4.学有余力的学生做第16题和17题。

  第16题,先让学生弄清楚这道题已知什么,求什么,再引导学生用求未知数的方法求出梯形的高。

  第17题,这一题是求梯形的面积,上底和下底都是已知的,高是未知的。

  高能不能求出来呢?怎样求?

  怎样利用涂色的三角形的条件求出梯形的高呢?

  三、作业。

  练习十九的第6题和第10题。

  课后小结:

2、《梯形面积的巩固练习》教案一等奖

  练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  练习重点:应用所学的知识解决一些实际问题。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习十八第6题,名数的改写。

  (1)名数的改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的.方法将第6题的结果填在课本上。

  3.6公顷=()平方米1200平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习十八第8题:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习十九第7题:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)

  3.1

  1.8

  2.0

  2.0

  渠底宽(米)

  1.5

  1.2

  1.0

  0.8

  渠深(米)

  0.8

  0.8

  0.5

  0.6

  横截面面积(平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习十八第10题:一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  四、作业

  练习十九第9题。

3、《梯形面积的巩固练习》教案一等奖

  练习要求:使学生进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。

  练习重点:应用所学的知识解决一些实际问题。

  练习过程:

  一、基本练习

  1.口算:练习十八第5题。根据学生情况,限时做在课本上,集体订正。

  7.2÷0.122.4÷0.30.2×12.6×5

  0.38×10000.8×2526.1-3.5-7.5

  3.8+2.5+6.210÷2.54.8×0.2+5.2×0.2

  2.看图思考并回答。

  (1)怎样计算梯形的面积?

  (2)梯形面积的计算公式是怎样推导出来的?

  (3)右图所示梯形的面积是多少?

  二、指导练习

  1.练习

  (1)名数的.改写方法是什么?根据学生的回答板书:

  除以它们之间的进率

  低级单位高级单位

  乘它们之间的进率

  (2)根据改写的方法将第6题的结果填在课本上。

  3.6公顷=()平方米1200平方米=()公顷

  4平方千米=()公顷52公顷=()平方千米

  160平方厘米=()平方分米=()平方米

  0.25平方米=()平方分米=()平方厘米

  (3)集体订正时让学生讲一讲自己的想法。

  2.练习:科技小组制作飞机模型,机翼的平面图是两个完全相同的梯形制成的(如图)。它的面积是多少?

  (1)生独立审题,分小组讨论解法。

  (2)选代表列出解答算式,不计算。

  (3)由学生讲所列算式的想法,

  (4)指导学生讲“(100+48)×250”为什么不除以2?

  (5)学生计算出它的面积,集体订正。

  三、课堂练习

  1.练习:根据表中所给的数值算出每种渠道横截面的面积。

  渠口宽(米)3.11.82.02.0

  渠底宽(米)1.51.21.00.8

  渠深(米)0.80.80.50.6

  横截面面积(平方米)

  生独立解答出结果并填在课本上,集体订正。

  2.练习一个果园的形状是梯形。它的上底是180米,下底是160米,高是50米。如果每棵果树占地10平方米,这个果园有多少平方米?

  四、作业

4、《梯形面积的巩固练习》教案一等奖

  教学目标:

  1.使学生通过实际测量充分感知四边形内角和为360度这一规律。

  2.提高学生综合运用知识解决问题的能力。

  3.通过动手测量,使学生经历充分感知四边形内角和为360度这一规律的全过程,并渗透归纳、猜想和验证的数学思想。

  4.使学生感悟到数学的神奇和奥妙,增强学好数学的'信心。

  教学重难点:

  感知四边形内角和是360度这一规律。

  教具准备:量角器。

  教学过程:

  一、动手操作 引发探究

  师:这节课我们继续来研究四边形。

  板书课题:平行四边形和梯形。

  二、探究新知

  展示一个平行四边形,请学生用量角器测量一下每个角的度数。再把四个角的度数相加,是多少度呢?这是一个四边形,其他的四边形是什么情况呢?

  小组研究,总结规律:

  1.组内分工测量75页8题中的每个四边形的各个角的度数。

  2.汇总填表75页9题。

  3.共同讨论总结规律,全班汇报交流。

  出示图形,小组内可再任意画一个四边形试一试。小结:任意一个四边形四个角的度数之和都是360度。

  三、巩固新知

  1.在表中适当的空格内画“∨”。

  2.在图中填写合适的四边形名称。

  四、课堂小结:

  这节课有什么收获?

  五、作业:

5、《梯形面积的巩固练习》教案一等奖

  背景:

  《数学课程标准》指出:数学教学,要紧密联系学生的实际和生活环境,从学生的经验和已有知识出发,创设生动有趣,有助于学生自主学习、合作交流的问题情境,引导学生开展观察、操作、猜测、验证、归纳、推理、交流、反思等活动,学会从数学的角度去观察事物、思考问题,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心。因此,创设问题情境是数学教学的重要策略之一。情境创设能够激发学生的问题意识和促进探究,使思维处于在爬坡状态。引发认识的不平衡并帮助学生生成新的认识。我认为在数学探究活动中,提出一个问题比解决一个问题还重要。这样学生就能达到良好的效果,从而使数学教学活动不断走向深入。现从一个教学片断来谈谈实际教学中如何正确创设情境。

  案例:

  (课件:金丰苑内一栋栋漂亮的楼房特别引人注目,在周围绿树成荫、环境优雅,但在一栋楼房前有一块地荒着的)

  师:如果你是设计师,针对这块荒地,你打算怎样设计?

  生1:种花

  生2:铺上草坪

  师:如果让你去铺,有什么问题吗?

  生1:这块地有多大?

  生2:这是一块梯形的地,面积怎么算呢?

  生3:这块梯形地接近于长方形,能否可以近似地看成长方形估算一下?

  师:这个办法能行吗?

  生1:不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积。

  生2:对。能否根据平行四边形的面积求法,转化成其他图形呢?

  师:那就请你们试一试吧。用你的方法,设法求出荒地的面积。

  (利用课前准备的学具,动手试试,4人小组合作。)

  生1:割补成一个长方形,面积=[(下底-上底)÷2+上底]×高再计算

  生2:用两个完全一样的梯形拼成一个长方形,面积=(上底+下底)×高÷2

  生3:用两个完全一样的梯形拼成一个平行四边形,面积=(上底+下底)×高÷2

  生4:分成两个三角形计算,面积=上底×高÷2+下底×高÷2

  师:同学们真聪明,想出了那么多方法。现在你还有什么想法吗?

  生1:可以利用这些公式求出梯形的面积,就可以去铺草坪了。

  生2:那么多公式,在计算时该选哪一个?

  师:是呀,那么多公式,在计算时该选哪一个呢?(小组商量一下)

  这一问,好多学生愣住了。有一学生说:随便,你想选哪一个就选哪一个。

  教师引导学生观察这些公式的共同点是什么?学生讨论得出:其实这么多公式,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。

  师小结:我们通过不同的方法把梯形转化成熟悉的图形,归根结底就是一个公式:梯形面积=(上底+下底)×高÷2。(师板书公式)

  反思:

  1、创设问题情境,让学生愿说

  情境是联系学生经验与学习内容之间的载体,创设一种合情的情境,能营造一种和谐的氛围。宽松和谐的求知氛围是启发学生积极提问的重要前提。它可以给学生留有思维、想象、创新的空间,启发学生自己提出问题;更主要的是学生在这样的氛围里愿意说,敢于说,有助于教师了解学生原有的生活经验和知识起点,为教学的展开铺垫了一个良好的基础。

  课一开始,教师就为学生创设了生活中非常熟悉的情景,为学生的提问准备了材料。随后教师的一句“如果你是设计师,针对这块荒地,你打算怎样设计?”激发了学生提问的欲望,把学生真正放在了主体的地位,使提问不再是老师的专用权利,更是学生的权利。师生真正成为学习的共同体。整个过程中,教师都以朋友身份进入课堂,允许学生有疑就问,允许“插嘴”,允许学生说错,不随便否定学生的提问,更多的是给予肯定和表扬,而且经常用“你还有什么问题吗?”“你还有什么想法吗?”等亲切的语句,消除了学生的紧张、戒备等心理,消除了学生的后顾之忧,让学生以最大的热情投入到活动中,敢问,想问,以积极的状态进行探究。

  2、运用多种方法,使学生会问

  选用学生熟悉的、生活中的实例为素材。情境创设的录像,让人感到亲切熟悉,看到荒地,让学生设计,接着就进行自然设计,而在设计中又遇到了问题:必须先知道面积,而这是梯形,面积怎么求?自然而然,很顺利地过渡到本节课的焦点问题上——怎样求梯形的面积,学生能提出这样有意义、有价值的关键性的问题,源于他们对提供的材料熟悉,觉得有东西可问。

  适时点拨,教给学生寻找问题的方法。找问题可从以下几方面去找:在知识的“生长点”上找问题,从旧知到新知的迁移过程中发现和提出问题。本节课学生提出“这块梯形接近于长方形,能否可以近似地看成长方形估算一下”学生反驳“不行。估算毕竟是近似的,买多了浪费,买少了麻烦,最好能求出实际面积”。这时,教师适当点拨“用你的方法,设法求出荒地的面积”;另外,还可以从知识的结合点上找问题,也就是在新旧知识的内在联系上发现和提出问题。比如本节课教师让学生动手操作,自己经历“操作——观察——猜想——验证”数学化的学习过程,通过对知识的理解、发现与生成中达到目的`,从而体验数学“再创造”的过程;也可以让学生在自己不明白,不理解的地方找问题,多问“为什么?”、“是什么?”、“怎么办?”。在这节课中,每到有必要的地方,老师都能恰当地点拨提醒:“你还有什么问题?”、“你有什么想法吗?”暗示学生从这里下手提问题。学生学到的不仅仅是知识,更是一种思考问题的方法。

  留给学生质疑的时间和空间。学生有疑好问,正是学生善于思考的表现。教师要提供学生“问题场”,在教学上要多给学生锻炼的机会,把学习的主动权还给学生,使学生真正成为学习的主人。留给学生足够的时间和空间是提供“问题场”的一种手段。学生在这样的空间和时间里能自己发现问题,提出问题,解决问题。这节课中“是呀,那么多公式,在计算时该选哪一个?”的问题出来后,教师再组织学生讨论,并适当引导追问“这些公式的共同点是什么?”学生走向深入的探究,在真正的思考,原来都可以转化成:梯形的面积=(上底+下底)×高÷2。学生学到不仅是这个公式,更是一种转化的数学思想方法。

6、《梯形的面积》的教学反思

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

7、《梯形的面积》的教学反思

  1、还给学生主动权,教师需做导航灯。

  数学教学要努力创造有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,给学生一个广阔的活动空间,当好学生学习的引导者、组织者与合作者。纵观两个案例,我们不难发现,案例1的教学仍是传统教学,教师设定了浅显直白的问题,学生无需经历“头脑风暴”,表面上都在积极参与,其实是被老师“牵着鼻子走”,没有创造性地学习。在这样的学习活动里,学生难以同步形成探究能力,更别说开阔发散思维了。案例2中的老师从讲台上走下来,真正把学习的主动权还给学生,真正做了学生学习的导航灯,充分调动学生学习的积极性,在思维方法、学习方式等学习要素上引领学生。

  2、大胆尝试,自主探究,亲历知识的获取过程。

  “自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点。教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

  3、强化实践,为学生搭建创新的舞台。

  著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。

8、《梯形的面积》的教学反思

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。

  在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的.特征:只有一组对边平行的四边形。然后让学生回忆已学过的平行四边形和三角形面积的推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的推导上,我让学生采用一个梯形和两个梯形来求。

  用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。

9、《梯形的面积》的教学反思

  这一课教学的重、难点是:学生在自主探索活动中,经历推导梯形面积公式的过程。因此,在呈现实际情境,让学生感受到学习梯形面积计算方法的必要性后,我创设了一个学生自主探索梯形面积的问题情境 老师准备不讲,看一看谁能用学过的知识,自己找出梯形的面积公式,你们能找到吗?学生用10分钟左右的时间在小组中经过充分的讨论和研究,通过动手剪、拼、贴,达成一致后,把小组的研究成果写在黑板条贴在黑板上,进行展示,主要有六种方法:

  ①用两个完全相同的.梯形拼凑成一个平行四边形。

  ②沿梯形的一条对角线剪开,把梯形分割成两个三角形。

  ③沿梯形的中位线剪开后,拼成一个平行四边形。

  ④在梯形的下底上找一点,把梯形分割成三个三角形。

  ⑤沿着梯形的上底的两个端点画出两条高,把梯形分割成一个长方形 和两个三角形。

  ⑥沿梯形的中位线向下对折,再沿两腰中点向下作垂线,把两个三角形向内折就变成两个长方形。

  在探索问题过程中得到启示,从中悟出真知〔S梯形=(a+b)h2〕。

  这充分说明,教学过程中只要多给学生一些思考的空间和时间,放手让学生进行探索,学生的潜力是很大的。

10、《梯形面积的计算》的教学反思

  一、提出问题,激发兴趣

  我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

  学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

  二、注重合作,促进交流

  学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。

  这时,我提醒他们:小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的.面积公式了!

  学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。

  三、思维拓展,能力提升

  新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?

  开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?学生兴趣盎然。很快就表示出两个三角形的面积,即:上底高2 、 下底高2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。

  很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。

  由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。

11、《梯形面积计算》的教学教育的反思

  我上了《梯形面积计算》一课,下面结合自己上课的感受以及学生作业的反馈情况,谈谈对这节课的认识。

  在这节课中我主要运用了合作探究、自主学习的学习方法,让学生运用已有的知识和学习经验来探索、研究新知识,并让学生进一步感受数学魅力。

  第一、注重知识间的紧密联系

  。在学习《梯形面积》之前,学生已经系统地学习了《平行四边形面积》和《三角形面积》两节课的内容,并掌握了平行四边形、三角形面积公式的推导过程。因此,梯形面积的学习虽然是一个新的内容,但是在方法上是有法可依的,在教学时我们可以据此为学生搭建学习的脚手架,密切联系之前的学习内容;而在研究过程中,又可以放手让学生自己开展研究,表述结论,从而经历比较完整的研究过程。

  为了更好地让学生自主探索,在本节课上也设计了相应的复习,主要是对平行四边形、三角形面积计算公式的复习。但是如果我们能够在复习公式的同时,将推导的有关过程进行一些整理,那么对学生研究梯形的面积计算无疑具有较强的正确迁移。

  第二、强化对知识形成过程的体验

  从这部分内容的教材编排来看,突出体现了重研究过程的特点,但这并不意味着结论不重要。在上课前,我让每个学生准备好两个完全一样的梯形。在研究过程中,我有意引导学生由三角形面积计算公式的推导过程去探索梯形面积公式,学生很容易想到这一点

  。当学生把两个完全一样的梯形拼成一个平行四边形时,再进一步启发学生观察拼成的平行四边形的底和高与梯形的底、高有什么关系,面积有什么关系,为了更好的让学生观察,我对教材上提供的实验素材和内容进行了处理和利用,让学生以小组为单位进行合作探究。

  在学生自主学习的基础上出示了教材中的`讨论题,帮助学生进一步分析实验数据,并进行实验结论的总结性概括。最后在探索平行四边形和梯形关系的基础上,再进行公式的推导和相关计算练习。

  第三、从练习反馈中全面反思本节课的有效性

  从练习题反馈上看,学生对本节课知识的掌握比较扎实,能够运用梯形面积公式计算面积。但是在练习第2题时,同学们读题后都是通过计算出面积判断哪些梯形的面积是相等的,从表面上看这道题的作用仅限于此。

  但是如果我能进一步引导观察,学生还会发现这些梯形的高都是相等的,得出了在高相等的情况下,如果梯形的上下底的和也相等,那面积也是相等的结论。另外通过这道题学生还领悟到了面积相等的两个梯形,形状是不一定相同的。

相关文章

推荐文章