高中物理《经典力学的局限性》优秀教案一等奖
1、高中物理《经典力学的局限性》优秀教案一等奖
{课前感知}
1.经典力学认为,物体的质量与物体的运动状态 ;而狭义相对沦认为,物体的质量随着它的速度的增大而 ,若一个物体静止时的质量为 ,则当它以速度 运动时,共质量m= 。
2.每一个天体都有一个引力半径,半径的大小由 决定;只要天体实际半径 它们的引力半径,那么由爱因斯坦和牛顿引力理论计算出的力的差异 。但当天体的实际半径接近引力半径时,这种差异 。
{即讲即练}
【典题例释】 【我行我秀】
【例1】20世纪以来,人们发现了一些事实,而经典力学却无法解释,经典力学只适用于解决物体的 问题,不能用来处理 运动问题,只适用于 物体,一般不适用于 粒子。这说明人们对客观事物的具体认识在广度上是有 的,人们应当 。
【思路分析】人们对客观世界的认识要受到他所处的时代客观条件和科学水平的制约,所以人们只有不断扩展自己的认识,才能掌握更广阔领域内的不同事物的本质与规律。
【答案】低速运动 高速 宏观 微观 局限性
不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律
【类题总结】历史的科学成就不会被新的科学成就所否定,它只能是新的科学在一定条件下的特殊情形
【例2】继哥白尼提出“太阳中心说”、开普勒提出行星运动三定律后,牛顿站在世人的肩膀上,创立了经典力学,揭示了包括行星在内的宏观物体的运动规律;爱因斯坦既批判了牛顿力学的不足,又进一步发展了牛顿的经典力学,创立了相对论,这说明 ( )
A.世界无限扩大,人不可能认识世界,只能认识世界的一部分
B.人的意识具有能动性,能够正确地反映客观世界
C.人对世界的每一个正确认识都有局限性,需要发展和深化
D.每一个认识都可能被后人推翻,人不可能获得正确的认识
【思路分析】发现总是来自于认识过程,观点总是为解释发现而提出的,主动认识世界,积极思考问题,追求解决(解释)问题,这是科学研究的基本轨迹。爱因斯坦的相对理论是对牛顿力学的理论的发展和深化,但也有人正在向爱因斯坦理论挑战
【答案】BC
【类题总结】一切科学的发现都是人们主动认识世界的结果,而每个人的研究又都是建立在前人研究的基础上,通过自己的努力去发展和提高。爱因斯坦的相对论理论并没有否定牛顿力学的理论,而是把它看成是在一定条件下的特殊情形。
【例3】一个原来静止的电子,经电压加速后,获得的速度为 .问电子的质量增大了还是减小了?改变了百分之几?
【思路分析】根据爱因斯坦的狭义相对论 得运动后质量增大了。
所以改变的百分比为 .
【答案】增大了 0.02%
【类题总结】在这种情况下,由于质量改变很小,可以忽略质量的改变,经典力学理论仍然适用,而宏观物体的运动速度一般都很小(相比于光速),所以经典力学解决宏观物体的动力学问题是适用的。 1. 19世纪末和20世纪以来,物理学的研究深入到 ,发现 等微观粒子不仅有 ,而且有 ,它们的运动规律不能用经典力学来说明。
2. 下列说法正确的是 ( )
A.经典力学能够说明微观粒子的规律性
B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题
C.相对论与量了力学的出现,表示经典力学已失去意义
D.对于宏观物体的高速运动问题,经典力学仍能适用
3.对于公式 ,下列说法中正确的是( )
A.式中的 是物体以速度V运动时的质量
B.当物体的运动速度 时,物体的质量为 0,即物体质量改变了,故经典力学不适用,是不正确的
C.当物体以较小的速度运动时,质量变化十分微弱,经典力学理论仍然适用,只有当物体以接近光速运动时,质量变化才明显,故经典力学适用于低速运动,而不适用于高速运动
D.通常由于物体的运动速度太小,故质量的变化引不起我们的感觉,在分析地球上物体的运动时,不必考虑质量的变化
{超越课堂}
〖基础巩固
1.下列说法正确的是 ( )
A.在经典力学中,物体的质量不随运动状态而改变,在狭义相对论中,物体的质量也不随运动状态而改变
B.在经典力学中,物体的质量随运动速度的增加而减小,在狭义相对论中,物体的质量随物体速度的增大而增大
C.在经典力学中,物体的质量是不变的,在狭义相对论中,物体的质量随物体速度的增大而增大
D.上述说法都是错误的
2.下列说法正确的是 ( )
A.牛顿定律就是经典力学
B.经典力学的基础是牛顿运动定律
C.牛顿运动定律可以解决自然界中所有的问题
D.经典力学可以解决自然界中所有的问题
3.20世纪初,著名物理学家爱因斯坦提出了 ,阐述物体 时所遵从的规律,改变了经典力学的一些结论.在经典力学中,物体的质量是 的.
而且具有 ,它们的运动规律不能用经典力学来说明.
4. 与 都没有否定过去的`科学,而认为过去的科学是自己在一定条件下的特殊情形.
5.一条河流中的水以相对于河岸的速度v水岸流动,河中的船以相对于河水的速度V船水顺流而下,在经典力学中的速度为:V船岸= .
6.在粒子对撞机中,有一个电子经过高压加速,速度达到光速的0.5倍,试求此时电子的质量变为静止时的多少倍?
〖能力提升
7.〖概念理解题20世纪以来,人们发现了一些新的事实,而经典力学却无法解释.经典力学只适用于解决物体的低速运动问题,不能用来处理高速运动问题,只适用于宏观物体,一般不适用于微观粒子.这说明 ( )
A.随着认识的发展,经典力学已成了过时的理论
B.人们对客观事物的具体认识在广度上是有局限性的
C.不同领域的事物各有其本质与规律
D.人们应当不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律
8.〖概念理解题下列说法正确的是 ( )
①爱因斯坦的狭义相对论研究的是物体在低速运动时所遵循的规律
②爱因斯坦的狭义相对论研究的是物体在高速运动时所遵循的规律
③牛顿力学的运动定律研究的是物体在低速运动时所遵循的规律
④牛顿力学的运动定律研究的是物体在高速运动时所遵循的规律
A.①③ B.②④
C.①④ D.②③
9.〖应用题关于经典力学和量子力学,下面说法中正确的是( )
A.不论是对客观物体,还是微观粒子,经典力学和量子力学都是适用的
B.量子力学适用于宏观物体的运动,经典力学适用于微观粒子的运动
C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动
D.上述说法都是错误的
10. 〖概念理解题下面说法中正确的是 ( )
A.根据牛顿的万有引力定律可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将变为原来的4倍
B.按照广义相对论可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将大于原来的4倍
C.在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出的力差异很大
D.在天体的实际半径接近引力半径时,根据爱因斯坦的引力理论和牛顿的引力理论计算出的力差异不大
11.〖应用题丹麦天文学家第谷连续20年详细记录了行星的运动过程中的位置的变化。这些资料既丰富又准确,达到了肉眼所能及的限度。但他并没有发现行星运动规律。对此,下列说法正确的有 ( )
A.占有大量感性材料是毫无意义的
B.第谷的工作为发现行星运动规律创造了前提
C.说明第谷没有真正发挥主观能动性
D.第谷缺少的是对感性材料的加工、制作
〖思维拓展
12.〖应用题当物体的速度v=0.8c(c为光速)时,质量增大到原质量的 倍。
13. 〖应用题两台升降机甲、乙同时自由下落,甲上的人看到乙是静止的,也就是说,在甲看来,乙的运动状态并没有改变,但是乙确实受到向下的地球引力,根据牛顿定律,受到外力作用的物体,其运动状态一定会改变,这不是有矛盾吗?你是如何理解的?
第六节 经典力学的局限性
【课前感知】
1.无关;增大;
2.天体的质量;远大于;并不很大;将急剧增大
【我行我秀】
1.(1)微观世界 电子 质子 中子 粒子性 波动性
2.(1)B 【思路分析】经典力学的适用范围是宏观、低速运动的物体,对于微观粒子和高速运动的物体的运动规律可用量子力学与相对论观点解释,两者研究问题的对象不一样,是相互补充的。
3.(1)C、D 【思路分析】公式中m0是静止质量,m是物体以速度v运动时的质量,A不对。由公式可知,只不当v接近光速时,物体的质量变化才明显,一般情况下物体的质量变化十分微小,故经典力学仍然适用,故B不对,C、D正确。
【超越课堂】
1.C【思路分析】在经典力学中,物体的质量是不变,在狭义相对论中,物体的质量随物体速度的增大而增大,二者在速度远小于光速时是统一的。
2.B【思路分析】经典力学并不等于牛顿定律,牛顿运动定律只是经典力学的基础;经典力学并非万能,也有其适用范围,并不能解决自然界中所有的问题 ,没有哪个理论可以解决自然界中所有问题。因此只有搞清牛顿运动定律和经典力学的隶属关系,明确经典力学的适用范围,才能正确解决此类问题。
3.狭义相对论 以接近光速的速度运动 不变
4.相对论 量子力学
5.v船水+v水岸
6.1.155倍
7.BCD
8.D
9.C
10.AB 【思路分析】在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出力差异并不很大。
11.BD【思路分析】开普勒是通过对第谷的资料研究才发现行星运动的规律的,如果第谷对自己的感性材料进行加工制作,相信他也能够发现行星运动的规律。
12.1.7倍 【思路分析】根据质量与速度的关系,将v=0.8c代入求得 m= = =1.7m0.
2、高中物理《经典力学的局限性》优秀教案一等奖
整体设计
高中学习的速度概念较之初中所学的速度有了很大的提升,对学生来说是比较困难的,所以教学设计先通过说明如何用坐标和坐标的变化量来表示质点的位置和位移,为速度概念的叙述作好准备。速度的矢量性问题,是本节的重点,特别是对瞬时速度的理解,体现了一种极限的思想,对此要求引导学生逐步理解,不要急于求成。速度的定义是高中物理中第一次向学生 介绍比值定义物理量的方法,要求教师正确地加以引导,力求学生能理解。教学过程中,要多举实例,通过具体的例子从大小和方向两方面来强化对速度概念的认识,在实际情景中达到建立速度概念的目的。教学设计最后说明速度的应用,特别以“STS”形式从一个侧面说明速度与社会发展的关系。
教学重点
速度概念的建立;速度的比值定义法的理解。
教学难点
速度矢量性的理解;瞬时速度的推导。
时间安排
2课时
三维目标
知识与技能
1、理解速度的概念。知道速度是表示物体运动快慢的物理量,知道它的含义、公式、符号和单位,知道它是矢量。
2、理解平均速度,知道瞬时速度的概念。
3、知道速度和速率以及它们的区别。
过程与方法
1、记住匀速直线运动中速度的计算公式,能用公式解决有关问题。
2、理解平均速度的物理含义,会求某段时间内的平均速度。
情感态度 与价值观
1、通过介绍或学习各种工具的速度,去感知科学的价值和应用。
2、培养对科学的兴趣,坚定学习思考探索的信念。
教学过程
导入新课
问题导入
为了推动我国田径事业的发展,四川省曾举办过一次100 m飞人挑战赛。有8名世界短跑名将参加角逐,其中包括我国的李雪梅和美国的琼斯,最终琼斯夺得冠军。我们知道百米赛跑分为起跑、途中跑和冲刺三个阶段,李雪梅的途中跑阶段比琼斯的起跑阶段跑得快,但我们都说琼斯比李雪梅跑得快,这是为什么?
通过本节课学习,我们就可以给出合理的评判标准。
情景导入
课件展示各种物体的运动,激发学生的学习兴趣。
影片展示:大自然中,物体的运动有快有慢。天空中,日出日落;草原上,猎豹急驰;葡萄架上,蜗牛爬行。
飞奔的猎豹、夜空的流星在运动;房屋、桥梁、树木,随着地球的自转、公转也在运动。天上的恒星,看起来好像不动,其实它们也在飞快地运动,速度至少在几十千米每秒以上,只是由于距离太远,在几十年、几百年的时间内肉眼看不出它们位置的变化。
当高台跳雪运动员出现在赛道的顶端时,全场观众的目光都集中在他身上。运动员由高处急速滑下,在即将到达赛道底部时,他的速度已达到100 km/h。这时,他双膝弯曲,使劲一蹬,顺势滑向空中。然后,为了减小空气阻力的影响,他上身前倾,双臂后摆,整个身体就像一架飞机,向前滑翔。刺骨的寒风抽打着他的脸庞,两边的雪松飞快地向后掠过。最终,滑雪板稳稳地落在地面。
在以上的各种运动现象中,都有关于运动的描述,运动的快慢如何,要用一个新的物理量来描述,那就是速度。
推进新课
一、坐标与坐标的'变化量
复习旧知:在上一节的学习中,我们学习了位移这一较为重 要的矢量。大家回忆一下,位移的定义是什么?
学生积极思索并回答出位移的定义:从初位置指向末位置的有向线段。(复习此知识点,旨在为速度的引入奠定知识基础,让学生知道位移大小的关键在于初末位置。由位置到位置坐标再到坐标的变化量,使学生的认知呈阶梯状上升)
教师引导:既然位移是描述物体位置变化的物理量,所以物体的位移可以通过位置坐标的变化量来表示。
问题展示:在训练场上,一辆实习车沿规定好的场地行驶,教练员想在车旁记录汽车在各个时刻的位置情况,他该如何做?假设在每一秒汽车都在做单向直线运动。
问题启发:对于物体位置的描述,我们往往需要建立坐标系。该教练员如何建立坐标系,才能方便地确定该车的位置?
点评:通过设问,发挥教 师的引导作用,“变教为诱”“变教为导”,实现学生的“变学为思”“变学为悟”,达到“以诱达思”的目标。
教师指导学生分组合作讨论并总结。
小结:直线运动是最简单的运动,其表示方式也最简单。如以出发点为起点,车行驶20 m,我们就很容易地确定车的位置。所以,应该建立直线坐标系来描述汽车的位置。
课堂训练
教练员以汽车的出发点为坐标原点,以汽车开始行驶的方向为正方向,建立直线坐标系,其对应时刻的位置如下表所示:
时刻(s) 0 1 2 3 4
位置坐标(m) 0 10 —8 —2 —14
根据教练员记录的数据你能找出:
(1)几秒内位移最大?
(2)第几秒内的位移最大?
解析:汽车在0时刻的坐标x0=0
汽车在1 s时刻的坐标x1=10
汽车在第1 s内的位置变 化为Δx=x1—x0=(10—0) m=10 m
所以,汽车在第1 s内的位移为10 m。
同理可求,汽车在1 s内、2 s内、3 s内、4 s内的位移分别为10 m、—8 m、—2 m、—14 m。汽车在第1 s内、第2 s内、第3 s内、第4 s内的位移分别为10 m,—18 m,6 m,—12 m。
所以,第2 s内的位移最大,4 s内的位移最大。
答案:(1)4 s内 (2)第2 s内
二、速度
以下有四个运动物体,请同学们来比较一下它们运动的快慢程度。
运动物体[来源:学*科*网Z*X*X*K] 初始位置(m) 经过时间(s) 末位置(m)
A、自行车沿平直道路行驶 0 20 100
B、公共汽车沿平直道路行驶 0 10 100
C、火车沿平直轨道行驶 500 30 1 250
D、飞机在天空直线飞行 500 10 2 500
如何比较A、B、C、D四个物体的运动快慢呢?
比较1:对A和B,它们经过的位移相同(都是100 m),A用的时间长(20 s),B用的时间短(10 s)。在位移相等的情况下,时间短的运动得快,即汽车比自行车快。
比较2:对B和D,它们所用的时间相等(10 s),B行驶了100 m,D飞行了200 m,B行驶的距离比D短,在时间相等的情况下,位移大的运动得快,即飞机比汽车快。
提出问题
以上两种比较都是可行的。位移相等比较时间,时间相等比较位移。如何比较B和C的快慢程度呢?它们的位移不相等,时间也不相等。
教师指导学生分小组讨论,5分钟后提出比较意见。
方法1:B和C的位移和时间都不相等,但可以计算它们每发生1 m的位移所用的时间,即用各自的时间t去除以位移Δx,数值大的运动得慢。
方法2:B和C的位移和时间都不相等,但可以计算它们平均每秒钟位移的大小量,单位时间内位移大的运动得快。
师生讨论:两种方法都可以用来比较物体运动的快慢,但方法2更能够符合人们的思维习惯。
点评:问题由教师提出,明确猜想和探究的方向,教师引导学生利用已有的知识和现象,鼓励大胆猜想讨论。通过这个开放性的问题,创设一种情境,把学生带进一个主动探究学习的空间。
引子:大自然中,物体的运动有快有慢。天空,日出日落;草原,骏马奔驰;树丛,蜗牛爬行。仔细观察物体的运动,我们发现,在许多情况下,物体运动快慢各不相等且发生变化,在长期对运动的思索、探索过程中,为了比较准确地描述运动,人们逐步建立起速度的概念。
提出问题
如何对速度进行定义?
学生阅读课本并回答。
1、速度的定义:位移与发生这个位移所用时间的比值。
2、速度的定义式:v=
3、速度的单位:m/s 常用单位:km/h,cm/s。
提示:速度是矢量,其大小在数值上等于单位时间内物体位移的大小,其方向就是物体运动的方向。
再次呈现:四个物体A、B、C、D快慢比较的表格,让学生分别计算它们的速度。
A、5 m/s B。10 m/s
C、25 m/s D。200 m/s
对比以上A、B、C、D的速度就很容易比较它们的快慢程度了。
课堂训练
汽车以36 km/h的速度从甲地匀速运动到乙地用了2 h,如果汽车从乙地返回甲地仍做匀速直线运动用了2。5 h,那么汽车返回时的速度为(设甲、乙两地在同一直线上)( )
A。—8 m/s B。8 m/s
C。—28。8 km/h D。28。8 km/h
解析:速度和力、位移一样都是矢量,即速度有正方向、负方向,分别用“+”“—”号表示。当为正方向时,一般不带“+”号。速度的正方向可以根据具体问题自己规定。有时也隐含在题目之中。例如该题中汽车从甲地到乙地的速度为36 km/h,为正值,隐含着从甲地到乙的方向为正,所以返回速度为负值,故淘汰B、D。
依据甲、乙两地距离为36×2 km=72 km,所以返回速度为 =—28。8 km/h=—28。8× m/s=—8 m/s。
答案:A
方法提炼:速度是一个矢量,有大小也有方向。在我们选择了正方向以后,当速度为正值时,说明质点沿正方向运动,当速度为负值 时,说明质点沿负方向运动,在物理学上,对矢量而言“负号”也有意义,说明它的方向与所选正方向相反。
三、平均速度和瞬时速度
坐在汽车驾驶员的旁边,观察汽车上的速度计,在汽车行驶的过程中,速度计指示的数值是时常变化的,如启动时,速度计的数值增大,刹车时速度计的数值减小。可见物体运动快慢程度是在变化的。这时我们说的汽车的“速度”是指什么?
提出问题
其实,我们日常所看到的直线运动,有许多都是变速运动。由于这种运动的快慢是时刻变化的,没有恒定的速度,我们怎么来描述它的快慢呢?
课件展示:北京至香港的京九铁路,就像一条长长的直线,把祖国首都与香港连接起来。京九线全长2 400 km,特快列车从北京到香港只需30 h,那么列车在整个过程的运动快慢如何表示?
学生解答:已知s=2 400 km,t=30 h,所以v=80 km/h
问题追踪:计算出的结果是否表示列车单位时间的位移都是80 km呢?教师在学生回答的基础上引导学生认识此速度的平均效果。既然列车是做变速运动,那么怎么看列车的速度是80 km/h?
学生总结:如果将列车的变速直线运动看作匀速直线运动来处理 的话,列车平均每小时的位移是80 km。
教师设疑:为了描述变速直线运动的快慢程度,我们可以用一种平均的思考方式,即引入平均速度的概念。平均速度应如何定义?
师生总结:1、平均速度:运动物体的位移和时间的比值叫做这段时间的平均速度。
2、定义式: =
知识拓展:课件展示某些物体运动的平均速度,加深对平均速度的概念理解。
某些物体运动的平均速度/(ms—1)
真空中的光速c 3、0×108 自行车行驶 约5
太阳绕银河系中心运动 20×105 人步行 约1。3
地球绕太阳运动 3。0×104 蜗牛爬行 约3×10—3
子弹发射 9×102 大陆板块漂移 约10×10—9
民航客机飞机 2。5×102
例1斜面滚下时在不同时刻的位置,如图1—3—1所示。可以从图中观察分析小球通过OA、OB、OC的过程中的运动快慢。
计算各段的平均速度。
图1—3—1
学生认真计算并公布结果: 段: =0。7 m/s, 段: =0。8 m/s。 段: =0。9 m/s。
总结归纳:计算结果表明,不同阶段的平均速度一般是不相等的。计算一个具体的平均速度,必须指明是哪一段时间(或位移)内的平均速度。
教师点评:由于小球运动快慢是在不断变化的,平均速度不能具体地告诉我们小球在每一时刻的运动快慢。可见,平均速度只是粗略地描述物体在一段运动过程中的总体快慢程度。
教师设疑:那么,怎样来描述物体在各个时刻的运动快慢呢?
学生通过课本预习知道,要精确地描述某一时刻的运动快慢必须引入瞬时速度这一物理量。
根据平均速度的定义可以知道: = ,对应的是一段位移和一段时间,如何建立瞬时速度的概念呢?瞬时速度对应的应该是某一位置和某一时刻。
师生探究:我们 已经知道平均速度对应的是一段时间,为求瞬时速度我们可以采取无限取微、逐渐逼近的方法。
方法介绍:以质点经过某点起在后面取一小段位移,求出质点在该段位移上的平均速度,从该点起取到的位移越小,质点在该段时间内的速度变化就越小,即质点在该段时间内的运动越趋于匀速直线运动。当位移足够小(或时间足够短)时,质点在这段时间内的运动可以认为是匀速的,求得的平均速度就等于质点通过该点时的瞬时速度。
教师演示:如图1—3—2所示,让滑块沿倾斜的气垫导轨做加速运动,利用挡光片的宽度Δx除以挡光的时间Δt,即可求得挡光片通过光电门的平均速度。
图1—3—2
将滑块放上不同宽度的遮光片,即Δx分别为1 cm、3 cm、5 cm、10 cm,若没有成品挡光片,可用硬纸片自制成需要的宽度。
测出每 个遮光片通过光电门所用的一段时间间隔Δt。
遮光片越窄、Δt越小时, 描述通过该位置的运动快慢越精确,当Δx小到一定程度,可认为 是瞬时速度。
教师总结:瞬时速度:运动物体在某一时刻(或某一位置)的速度。准确地讲,瞬时速度是物体在某时刻前后无穷短时间 内的平均速度,是矢量,其大小反映了物体此时刻的运动快慢,它的方向就是物体此时刻的运动方向,即物体运动轨迹在该点的切线方向。
四、速度和速率
速率:瞬时速度的大小叫做速率。平均速率:物体运动的路程与所用时间的比值。
例2如图1—3—3,一质点沿直线AB运动,先以速度v从A匀速运动到B, 接着以速度2v沿原路返回到A,已知A B间距为x,求整个过程的平均速度、平均速率。
图1—3—3
解析:整个过程位移为0,所以整个过程的平均速度为0。
整个过程通过的总路程为2x,所用的总时间为t= 。
所以平均速率为 = = x。
答案:0 x
要点总结:1、速度是矢量,既有大小,又有方向;速率是标量,只有大小,没有方向。
2、无论速度方向如何,瞬时速度的大小总等于该时刻的速率。
3、平均速度是矢量,其方向与对应的位移方向相同;平均速率是标量,没有方向。
4、平均速度等于位移与所用时间的比值,平均速率等于路程与所用时间的比值,平均速度的大小不等于平均速率。
5、只有单向直线运动时,平均速度的大小等于平均速率,其他情况下,平均速度均小于速率,二者的关系类似于位移和路程。
课堂小结
定义 物理意义 注意问题
速度 位移与发生这个位移所用时间的比值 描述物体的快慢程度和运动方向 v和s及t是对应关系。是矢量,方向就是物体运动的方向
平均速度 物体在时间间隔Δt内运动的平均快慢 描述在一段时间内物体运动的快慢和方向 只能粗略地描述物体的运动快慢。大小和所研究的时间间隔Δt有关;是矢量,方向和运动方向相同
瞬时速度 物体在某时刻或某位置的速度 描述物体在某时刻的运动快慢和方向 精确地描述物体的运动快慢。矢量,方向沿物体运动轨迹的切线方向
速率 瞬时速度的大小叫做速率 描述物体的运动快慢 是标量,只考虑其大小不考虑其方向
布置作业
1、教材第18页“问题与练习”,第1、2题。
2、观察生活中各种物体的运动快慢,选取一定的对象,测量它们的速度,并说明是平均速度还是瞬时速度,并把测量的数据与同学交流讨论。
板书设计
3 、运动快慢的描述 速度
活动与探究
课题:用光电门测瞬时速度
请你找老师配合,找齐所用仪器,根据说明书,自己亲自体验用光电门测瞬时速度,并写一实验报告。
步骤 学生活动 教师指导 目的
1 根据查阅的资料,确定实验方案 介绍相关书籍资料 1。让学生了解光电门测瞬时速度的原理
2。培养学生的动手能力和独立思考能力
2 进行实验和收集数据 解答学生提出的具体问题
3 相互交流活动的感受 对优秀实验成果进行点评
参考资料:
瞬间无长短,位置无大小,除了用速度计外,还可以用光电门测瞬时速度。实验装置如图1—3—4所示,使一辆小车从一端垫高的木板上滑下,木板旁有光电门,其中A管发出光线,B管接收光线。当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间。这段时间就是遮光板通过光电门的时间。根据遮光板的宽度Δx和测出的时间Δt,就可以算出遮光板通过光电门的平均速度 = 。由于遮光板的宽度Δx很小, 因此可以认为,这个平均速度就是小车通过光电门的瞬时速度。
图1—3—4
习题详解
1、解答:(1)1光年=365×24×3 600×3。0×108 m=9。5×1015 m。
( 2)需要时间为 s=4。2年。
2、解答:(1)前1 s平均速度v1=9 m/s
前2 s平均速度v2=8 m/s
前3 s平均速度v3=7 m/s
前4 s平均速度v4=6 m/s
全程的平均速度v5=5 m/s
v1最接近汽车关闭油门时的瞬时速度,v1小于关闭油门时的瞬时速度。
(2)1 m/s,0
说明:本题要求学生理解平均速度与所选取的一段时间有关,还要求学生联系实际区别平均速度和(瞬时)速度。
3、解答:(1)24。9 m/s (2)36。6 m/s (3)0
说明:本题说的是平均速度是路程与时间的比,这不是教材说的平均速度,实际是平均速率。应该让学生明确教材说的平均速度是矢量,是位移与时间的比,平均速率是标量,日常用语中把平均速率说成平均速度。
设计点评
本节内容是在坐标和坐标的变化基础上,建立速度的概念。速度的建立采用了比值定义法,在教学中稍加说明,在以后的学习中还会有更加详细的介绍。对速度的引用,本设计采用了“单位时间的位移”与“单位位移的时间”进行对比,体会速度引入的方便性。以京九铁路为情景,既激发了学生的学习热情又培养了爱国之情。在瞬时速度的理解上,本设计利用了光电门的装置进行说明,起到了良好的效果。
3、高中物理《经典力学的局限性》优秀教案一等奖
研究性实验:(1) 研究匀变速运动练习使用打点计时器:
1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4
正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。
3.重点:纸带的分析 0 1 2 3 4
a.判断物体运动情况:
在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。
如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。
b.测定加速度:
公式法: 先求?S,再由?S= aT2求加速度。
图象法: 作v-t图,求a=直线的斜率
c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T
测定匀变速直线运动的加速度:
1.原理::?S=aT2
2.实验条件:
a.合力恒定,细线与木板是平行的。
b.接50HZ,4-6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的.长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:
选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。
5. 数据处理: 0 1 2 3 4 5 6
根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。
用逐差法处理数据求出加速度:
S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2
a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2
测匀变速运动的即时速度:(同上)
(2) 研究平抛运动
1.实验原理:
用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:
木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:
a. 固定白纸的木板要竖直。
b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
(3) 研究弹力与形变关系
1. 方法归纳:(1)用悬挂砝码的方法给弹簧施加压力(2)用列表法来记录和分析数据(如何设计实验记录表格)(3)用图象法来分析实验数据关系步骤:1:以力为纵坐标、弹簧伸长为横坐标建立坐标系2:根据所测数据在坐标纸上描点3:按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)4:以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。5:解释函数表达式中常数的意义。
2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度
4、高中物理《经典力学的局限性》优秀教案一等奖
第一章 静电场
学案1 电荷及其守恒定律
1.自然界中只存在两种电荷:______电荷和________电荷.电荷间的作用规律是:同种电荷相互______,异种电荷相互________.
2.用毛皮摩擦橡胶棒时,橡胶棒带____________电荷,毛皮带__________电荷.用丝绸摩擦玻璃棒,玻璃棒带______电荷,丝绸带______电荷.
3.原子核的正电荷数量与电子的负电荷数量一样多,所以整个原子对外界表现为________.金属中距离原子核最远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫做________________.失去这种电子的原子便成为带____电的离子.离子都在自己的平衡位置上振动而不移动,只有自由电子穿梭其中.所以金属导电时只有________在移动.
4.把带电体移近不带电的导体,可以使导体靠近带电体的一端带________,远离的一端带________这种现象叫静电感应.利用静电感应使物体带电叫________起电.常见的起电方式还有________和________等.
5.电荷既不能创生,也不能消灭,只能从一个物体______到另一物体,或者从物体的一部分____________到另一部分.
6.物体所带电荷的多少叫________________.在国际单位制中,它的单位是________,用________表示.
7.最小的电荷量叫________,用e表示,e=________.所有带电体的电荷量都等于e的____________.电子的电荷量与电子的质量之比叫做电子的________.
答案 1.正 负 排斥 吸引 2.负 正 正 负
3.电中性 自由电子 正 自由电子 4.异号电荷 同号电荷 感应 摩擦起电 接触起电 5.转移 转移 6.电荷量 库仑 C 7.元电荷 1.6 ×10-19 C 整数倍 比荷
一、电荷
[问题情境]
在干燥的冬天,当你伸手接触金属门把的一刹那,突然听到“啪”的一声,手麻了一下,弄得你虚惊一场,是谁在恶作剧?原来是电荷在作怪.
1.这些电荷是哪里来的?物质的微观结构是怎样的?摩擦起电的原因是什么?
2.什么是自由电子,金属成为导体的原因是什么?
3.除了摩擦起电,还有其它方法可以使物体带电吗?
答案 1.来自原子内部 ; 物质由原子组成,而原子则由原子核(质子和中子)和核外电子构成; 不同物质的原子核束缚电子的能力不同.
2.金属中距离原子核最远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫自由电子; 自由电子的自由活动是金属成为导体的原因.
3.感应起电和接触起电.
[要点提炼]
1.摩擦起电的原因:在两个物体相互摩擦时,一些束缚不紧的电子会从一个物体转移到另一个物体,于是原来呈电中性的物体由于得到电子而带____电,失去电子的物体则带____电.
2.感应起电的原因:当一个带电体靠近导体时,由于电荷间的相互吸引和排斥,导体中的自由电子便会趋向或远离带电体,使导体靠近带电体的一端带____电荷,远离的一端带____电荷.
3.常见的起电方式有摩擦起电、感应起电和接触起电.三种起电方式的实质都是________ 的转移.
答案 1.负 正 2.异号 同号 3.电子
[问题延伸]
感应起电现象中实验物体必须是导体吗?
答案 必须是导体,因为导体中有自由电子,可以自由移动.
二、电荷守恒定律
[问题情境]
现代生活中电无处不在,北京市一天的耗电量可达千万度,那么,电荷会不会像煤和石油一样总有一天会被用完呢?
1.电荷是摩擦的过程中创造出来的吗?
2.在电荷转移的过程中其总量是否守恒?
答案 1.电荷不是创造出来的,它是物体组成的一部分 2.守恒
[要点提炼]
1.电荷守恒定律的内容:电荷既不能创生,也不能消灭,只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分.
2.“电荷的中和”是指电荷的种类和数量达到等量、异号,这时正、负电荷的代数和为________,而不是正、负电荷一起消失了.
答案 2.零
[问题延伸]
怎样理解电荷守恒定律中“电荷的总量”?
答案 “电荷的总量” 可理解为正、负电荷的代数和.
例1 如图1所示,不带电的枕形导体的A、B两端各贴有一对金箔.当枕形导体的A端靠近一带电导体C时( )
图1
A.A端金箔张开,B端金箔闭合
B.用手触摸枕形导体后,A端金箔仍张开,B端金箔闭合
C.用手触摸枕形导体后,将手和C都移走,两对金箔均张开
D.选项A中两对金箔分别带异种电荷,选项C中两对金箔带同种电荷
解析 根据静电感应现象,带正电的导体C放在枕形导体附近,在A端出现了负电,在B端出现了正电,这样的带电并不是导体中有新的电荷,只是电荷的重新分布.金箔上带电相斥而张开.选项A错误.
用手触摸枕形导体后,B端不是最远端了,人是导体,人的脚部甚至地球是最远端,这样B端不再有电荷,金箔闭合.选项B正确.
用手触摸导体时,只有A端带负电,将手和C移走后,不再有静电感应,A端所带负电便分布在枕形导体上,A、B端均带有负电,两对金箔均张开.选项C正确.
以上分析看出,选项D也正确.
答案 BCD
名师点拨 本节要求知道三种起电方法的特点,接触起电带同种电荷,摩擦起电带等量的异种电荷,感应起电则是近异远同,注意用手触摸最远端是脚或地球.
变式训练1 如图2所示,A、B、C是三个安装在绝缘支架上的金属体,其中C球带正电,A、B两个完全相同的枕形导体不带电.试问:
图2
(1)如何使A、B都带等量正电?
(2)如何使A、B都带等量负电?
(3)如何使A带负电B带等量的正电?
答案 见解析
解析 (1)把AB紧密靠拢,让C靠近B,则在B端感应出负电荷,A端感应出等量正电荷,把A与B分开后再用手摸一下B,则B所带的负电荷就被中和,再把A与B接触一下,A和B就带等量正电荷.(2)把AB紧密靠拢,让C靠近B,则在B端感应出负电荷,A端感应出等量正电荷,再用手摸一下A或B,则A所带的正电荷就被中和,而B端的负电荷不变,移去C以后再把A与B分开,则A和B就带等量负电荷.(3)把AB紧密靠拢,让C靠近A,则在A端感应出负电荷,B端感应出等量正电荷,马上把A与B分开,则A带负电B带等量的正电.
例2 有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量6.4×10-9 C和-3.2×10-9 C,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?
解析 当两小球接触时,带电荷量少的负电荷先被中和,剩余的正电荷再重新分配.由于两小球相同,剩余正电荷必均分,即接触后两小球带电荷量
QA′=QB′=QA+QB2=1.6×10-9 C
在接触过程中,电子由B球转移到A球,不仅将自身电荷中和,且继续转移,使B球带QB′的正电,这样,共转移的电子电荷量为
ΔQ=-QB+QB′=3.2×10-9 C+1.6×10-9 C=4.8×10-9 C
转移的电子数N=ΔQe=3.0×1010个
答案 见解析
名师点拨 对于两个带电小球电荷量重新分配的问题,如果是两个完全相同的小球,同性则总量平均分到一半,如异性则先中和,剩下的平均分配.如果未讲明相同的小球,不一定平均分配.
变式训练2 有三个相同的金属小球A、B、C,其中小球A带有2.0×10-5 C的正电荷,小球B、C不带电,现在让小球C先与球A接触后取走,再让小球B与球A接触后分开,最后让小球B与小球C接触后分开,最终三球的带电荷量分别为qA=________ C,qB=________ C,qC=________ C.
答案 0.5×10-5 0.75×10-5 0.75×10-5
【即学即练】
1.关于元电荷的理解,下列说法正确的是( )
A.元电荷就是电子
B.元电荷就是质子
C.元电荷是表示跟电子所带电荷量数值相等的电荷量
D.元电荷就是自由电荷的简称
答案 C
解析 最小的电荷量叫元电荷,表示跟电子所带电荷量数值相等.
2.关于摩擦起电和感应起电的实质,下列说法中正确的是( )
A.摩擦起电说明电荷可以被创造
B.摩擦起电是由于电荷从一个物体转移到另一个物体上
C.感应起电是由于电荷从带电物体转移到另一个物体上
D.感应起电是电荷在同一物体上的转移
答案 BD
解析 摩擦起电是电子在物体之间的转移,而感应起电则是物体内部电子的转移.
3.如图3所示,将带正电的球C移近不带电的枕形金属导体时,枕形导体上电荷的移动情况是( )
图3
A.枕形导体中的正电荷向B端移动,负电荷不移动
B.枕形导体中电子向A端移动,正电荷不移动
C.枕形导体中的正、负电荷同时分别向B端和A端移动
D.枕形导体中的正、负电荷同时分别向A端和B端移动
答案 B
解析 导体中自由电子可以自由移动,正电荷是原子核,不能移动.
4.带电微粒所带电荷量不可能是下列值中的( )
A.2.4×10-19 C B.-6.4×10-19 C
C.-1.6×10-18 C D.4.0×10-17 C
答案 A
解析 带电体所带电荷量只能是元电荷1.6 ×10-19 C的整数倍.
1.下列关于电现象的叙述中正确的是( )
A.玻璃棒无论与什么物体摩擦都带正电,橡胶棒无论与什么物体摩擦都带负电
B.摩擦可以起电是普遍存在的现象,相互摩擦的两个物体总是同时带等量的异种电荷
C.带电现象的本质是电子的转移,物体得到电子一定显负电性,失去电子显正电性
D.当一种电荷出现时,必然有等量的异种电荷出现;当一种电荷消失时,必然有等量的异种电荷消失
答案 BCD
2.以下说法正确的是( )
A.摩擦起电是自由电子的`转移现象
B.摩擦起电是通过摩擦产生的正电荷和电子
C.感应起电是自由电子的转移现象
D.金属导电是由于导体内有可以移动的正电荷
答案 AC
解析 摩擦起电是电子在物体之间的转移,感应起电则是物体内部电子的转移,所以A、C正确,B错误.金属导电是由于导体内有可以移动的自由电子,而不是正电荷,D项错.
3.将两个完全相同的金属球A和B接触一下,再分开一小段距离,发现两小球之间相互排斥,则A、B两球原来带电情况可能是( )
A.A和B原来带有等量异种电荷
B.A和B原来带有同种电荷
C.A和B原来带有不等量异种电荷
D.A和B原来只有一个带电
答案 BCD
解析 当A和B带有等量异种电荷时,接触一下后电荷被中和.A项错误.
4.将带电棒移近两个不带电的导体球,两个导体球开始时互相接触且对地绝缘,如图4所示,下列几种方法能使两球都带电的是( )
图4
A.先把两球分开,再移走棒
B.先移走棒,再把两球分开
C.先将棒接触一下其中一球,再把两球分开
D.棒带的电荷量如果不变,不能使两导体球带电
答案 AC
解析 A项正确,这是感应起电的正确操作步骤,B项错;C项正确,描述的是接触起电的操作步骤;D项错误,在感应起电中可以做到“棒带的电荷量不变,两导体球都带电”.
5.如图5所示,有一带正电的验电器,当一金属球A靠近验电器的小球B(不接触)时,验电器的金箔张角减小,则( )
图5
A.金属球A可能不带电
B.金属球A可能带负电
C.金属球A可能带正电
D.金属球A一定带正电
答案 AB
解析 由题意可知验电器是带电的(因箔片有张角),当不带电的金属球A靠近验电器的小球B时,由于感应起电,金属球A会带上异种电荷,因异种电荷相吸,所以验电器上带的电荷会更多的聚集到小球B上,箔片上聚集的电荷会减少,故张角减小,A项正确;当金属球A带负电时,同样因异种电荷相吸,使得箔片上聚集的电荷减少,张角减小,B项正确.
6. 绝缘细线上端固定,下端挂一轻质小球a,a的表面镀有铝膜.在a的近旁有一绝缘金属球b,开始时,a、b都不带电,如图6所示,现使b带正电,则( )
图6
A.b将吸引a,吸住后不放开
B.b先吸引a,接触后又把a排斥开
C.a、b之间不发生相互作用
D.b立即把a排斥开
答案 B
7.M和N是原来都不带电的物体,它们互相摩擦后M带正电荷1.6×10-10 C,下列判断中正确的是( )
A.在摩擦前M和N的内部没有任何电荷
B.摩擦的过程中电子从N转移到了M
C.N在摩擦后一定带负电荷1.6×10-10 C
D.M在摩擦过程中失去了1.6×10-10个电子
答案 C
解析 由电荷守恒可知C项正确.
8.某人做静电感应实验,有下列步骤及结论:①把不带电的绝缘导体球甲移近带负电的绝缘导体球乙,但甲、乙两球不接触.②用手指摸甲球.③手指移开.④移开乙球.⑤甲球带正电.⑥甲球不带电.下列操作过程和所得结论正确的有( )
A.○1→②→③→④→⑥ B.①→②→④→③→⑥
C.○1→②→③→④→⑤ D.①→②→④→③→⑤
答案 C
解析 ○1→②→③→④→⑤是做静电感应实验的正确步骤.
9.两个完全相同的金属球,一个带+6×10-8 C的电荷量,另一个带-2×10-8 C的电荷量.把两球接触后再分开,两球分别带电多少?
答案 两球都带正电且均为2×10-8 C
解析 两个完全相同的金属球接触后再分开,要平均分配电荷量,故两球均带q=(q1+q2)/2=[(+6×10-8)+(-2×10-8)]/2 C=2×10-8 C,带正电.
10. 如图7所示,通过调节控制电子枪产生的电子束,使其每秒钟有104个电子到达收集电子的金属瓶,经过一段时间,金属瓶上带有-8×10-12 C的电荷量,求:
图7
(1)电子瓶上收集到多少个电子;
(2)实验的时间为多长.
答案 (1)5×107 (2)5×103 s
解析 因每个电子的带电荷量为-1.6×10-19 C,金属瓶上带有-8×10-12 C的电荷量,所以电子瓶上收集到的电子个数为n=(-8×10-12 C)/(-1.6×10-19 C)=5×107个
实验的时间为t=(5×107)/104 s=5×103 s
5、高中物理《经典力学的局限性》优秀教案一等奖
教学目标:
一、知识目标:
1、知道什么是单位制,什么是基本单位,什么是导出单位;
2、知道力学中的三个基本单位。
二、能力目标:
培养学生在计算中采用国际单位,从而使运算过程的书写简化;
三、德育目标:
使学生理解建立单位制的重要性,了解单位制的基本思想。
教学重点:
1、什么是基本单位,什么是导出单位;
2、力学中的三个基本单位。
教学难点:
统一单位后,计算过程的正确书写。
教学方法:
讲练法,归纳法
教学用具:
投影仪、投影片
教学步骤:
一、导入新课
前边我们已经学过许多物理量,它们的公式各不相同,并且我们知道,有的是通过有关的公式找到它们之间的联系的:那么各个物理量的单位之间有什么区别?它们又是如何构成单位制的呢?本节课我们就来共同学习这个问题。
二、新课教学:
(一)用投影片出示本节课的学习目标:
1、知道什么是单位制,知道力学中的.三个基本单位;
2、认识单位制在物理计算中的作用。
(二)学习目标完成过程:
1、基本单位和导出单位:
(1)举例:
a:对于公式 ,如果位移s的单位用米,时间t的单位用秒;我们既可用公式得到v、s、t之间的数量关系,又能够确定它们单位之间的关系,即可得到速度的单位是米每秒。
b:用公式F=ma时,当质量用千克做单位,加速度用米每二次方秒做单位,求出的力的单位就是千克米每二次方秒,也就是牛,并且我们也能得到力、质量、加速度之间的数量关系。
(2)总结推广:
物理公式在确定物理量的数量的同时,也确定了物理量的单位关系。
(3)基本单位和导出单位:
a:在物理学中,我们选定几个物理量的单位作为基本单位;
b:据物理公式中这个物理量和其他物理量之间的关系,推导出其他物理量的单位,叫导出单位;
c:举例说明:
1)我们选定位移的单位米,时间的单位秒,就可以利用 推导得到速度的单位米每秒。
2)再结合公式 ,就可以推导出加速度的单位:米每二次方秒。
3)如果再选定质量的单位千克,利用公式F=ma就可以推导出力的单位是牛。
(4)基本单位和到单位一起构成了单位制。
(5)学生阅读课文,归纳得到力学中的三个基本单位。
a:长度的单位——米;
b:时间的单位——秒;
c:质量的单位——千克。
(6)巩固训练:
现有下列物理量或单位,按下面的要求填空:A:质量;B:N;C:m/s2 D:密度;E:m/s;F:kg;G:cm;H:s;I:长度;J:时间。
1)属于物理量的是 。
2)在国际单位制中作为基本单位的物理量有 ;
3)在国际单位制中属于基本单位的有 ,属于导出单位的有 。
2、例题教学:
(1)用投影片出示例题:
一个原来静止的物体,质量是7千克,在14牛的恒力作用下:
a:5秒末的速度是多大?
b:5秒内通过的路程是多大?
(2)分析:
本题中,物体的受力情况是已知的,需要明确物体的运动情况,物体的初速度v0=0,在恒力的作用下产生恒定的加速度,所以它作初速度为零的匀加速直线运动,已知物体的质量m和所受的力F,据牛顿第二定律F=ma求出加速度a,即可用运动学共识求解得到最终结果。
(3)学生在胶片上书写解题过程,选取有代表性的过程进行评析:
已知:m=7kg,F=14N,t=5s
求:vt和S
解:
vt=at=2m/s2×5s=10m/s
s= at2= ×2m/s2×25s2=25m
(4)评析:刚才这位同学在解答过程中,题中各已知量的单位都是用国际单位表示的,计算的结果也是用国际单位表示的,做的很好。
引申:既然如此,我们在统一各已知量的单位后,就不必一一写出各物理的单位,只在数字后面写出正确单位就可以了。
(5)用投影片出示简化后的解题过程:
(6)巩固训练:
质量m=200g的物体,测得它的加速度为a=20cm/s2,则关于它所受的合力的大小及单位,下列运算既正确又符合一般运算要求的是 。
A:F=200 20=400N; B:F=0.2 0.2=0.04N:
C:F=0.2 0.2=0.04; D:F=0.2kg 0.2m/s2 =0.04N
三、小结
通过本节课的学习,我们知道了什么是导出单位,什么是基本单位,什么是单位制,以及统一单位后,解题过程的正确书写方法。
四、作业:
一个物体在光滑的水平面上受到一个恒力的作用,在0.3秒的时间内,速度从0.2m/s增加到0.4m/s;这个物体受到另一个恒力的作用时,在相同的时间内,速度从0.5m/s增加到0.8m/s,第二个力和第一个力之比是多大?
6、九年级物理《力学》课后教学反思
在现行九年级物理教材中,力学从第十二章第四节开始,教学顺序是第四节力——第五节牛顿第一定律——第六节二力平衡——第十三章第一节弹力弹簧测力计——第二节重力——第三节摩擦力。从表面看起来,这种安排似乎没有什么不妥,但走进实际物理教学,我们往往会发现一些问题,如果不对力学的教学顺序进行适当的调整,教与学都会显得很吃力。
在力学第一节中,按教材的安排,教学内容包括力的作用效果和力的单位、力的三要素、力的示意图、什么是力和力的性质,接着进行第二节牛顿第一定律和二力平衡,然后再是测量力和重力。第一节中我们会发现学完力的作用效果后学习力的单位及三要素有些知识联系不上,学生都不知道什么是力,谈什么单位和三要素,教材编排者的本意是希望通过力的作用效果来认识什么是力,因为力的概念很粗象,就是物体对物体的作用,所以希望了解了一个物体对另一个物体因为有力而产生一系列的效果再来认识力更好。这种本意是好的,但后续安排没跟上。个人认为,第一节教学可先通过了解力的作用效果后现学习什么是力,接着学习力性质和力的三要素,最后学习力的示意图。本节内容安排2课时教学为宜,毕竟学生初次接触力,还是有一些难度的。
学完第一节力后,不必马上学习牛顿第一定律,可按着安排第十三章的弹力弹簧测力计,因为在前一节学习中,我们让学生明确了力是有大小的,接着学习力的测量似乎更符合认知规律,这对学生刚学习力也是一个缓冲。学完力的测量后,继续学习第十三章的第二节重力,毕竟重力是力学中应用最多的`一种力,在第十二章的二力平衡中有大量应用,如果没有学习重力,很多二力平衡都不好说明。学完重力后,可适当补充介绍压力和支持力的示意图,然后继续补充合力的知识。合力在现行物理教材中没有介绍,但在市教科院的考试说明中是有要求的,同时这对牛顿第一定律的学习也是有帮助的,因为牛顿第一定律的条件是物体不受外力,而我们又在实际中找不到这样的物体,我们可将一个所受合外力为零的物体理解为不受外力的物体,还有平衡力中,平衡力的实质就是合力为零。
学完重力后再可返回学习牛顿第一定律和二力平衡,然后再跳到第十三章第三节摩擦力。
7、高中物理《机械能守恒定律》教学反思
机械能守恒定律是本章的重点,学生对定律的得出、含义、适用条件应该有明确的认识。这是能够用这个定律解决实际问题的基础,教学中首先要重视这些内容,因此,我分三步完成机械能守恒定律第一课时的教学:第一步要使学生理解动能和势能之间可以通过力做功实现相互转化,第二步从理论上推导机械能守恒定律,第三步要使学生理解机械能守恒定律成立的条件。
1、动能与势能之间的相互转化
这部分内容教材的编写特点是很注意从生活中的典型实例入手导入课题。为此,我选择设计了几个的演示实验:烧杯倒水冲刷叶轮转动和竖直上抛小球,引导学生观察并思考,了解到动能和重力势能之间可以通过重力做功实现相互转化,并作了适当的拓展:由以上演示实验联想到东汉时期我国劳动人民就发明的水车磨坊和现代大型的水力发电站;另外,还利用水平弹簧摆球的实验,引导学生观察实验并细致分析,得出动能和弹性势能之间也可以通过弹力做功来实现相互转化的结论。
这样的教学设计既体现了物理教学提倡实验、观察、思考的特点,又重视学生独立思考能力的培养。教学设计发掘了教材资源,又不拘泥于教材,演示实验新颖,操作顺利流畅,完成了预定的教学目标。
通过实例的分析,使学生了解势能和动能相互转化的定性关系,知道一种能量减少,必然导致另一种能量的增加;然后提出动能和势能转化有什么定量关系,让学生进行讨论与交流并提出猜想,调动学生的积极性,培养学生的合作意识与交流能力,加强师生的互动性。不足之处在于,由于担心时间进度,处理不是很细致,提出的问题层次性不强。
2、机械能守恒定律的理论推导
不同于教材以小球的自由落体为例的教学设计,我选择的是伽利略摆作为课堂分析和理论推导的模型,利用动能定理和重力做功与重力势能的关系,要求学生自行独立分析并推导出在只有重力做功情况下的机械能守恒定律。备课时,我参考了人教版物理必修2的相关章节的内容,从而决定在课堂教学中,换用当年伽利略摆的实验,让学生认识到能量的观点其实早在牛顿之前就已经体现出来了,从而将物理学史的教学融入到课堂教学过程中来,并培养学生细致的观察能力,表面上看来没有关联的概念之间其实存在着很多联系。这样让整个推导过程上升到一个追寻守恒量的探究高度,而不仅仅是一个单纯的数学演算推导。
实际的课堂教学中,学生的理论推导过程用时应该较长,教师应该细致观察学生的推导进度,掌握好时间。这过程的处理还是稍显仓促,学生在黑板上的演算推导略显粗糙,有部分同学没有事先选取零势能参考面,所以应当提前强调这一点。我觉得必须要给课堂适当的`留白,给学生自己思考和理清思路的时间,给学生充分分析和推理的机会。这就要求我们要精心设计课堂教学过程,以学生通过自学和引导学生发现知识和规律为主。课堂不是长篇累牍的讲解知识。教师在课堂上起的是引导的角色,所以必须要做到内容上有所取舍并千方百计地精益求精,教学设计重质而轻量,这样才能够高效率的完成既定的课堂教学安排。
学生通过自行推导得出机械能守恒定律,要引导学生做好讨论和交流,展示自己的推导结果。这一阶段是前面理论推导的点睛之笔,对于学生理解机械能守恒定律的内涵有着极其重要的意义,千万不能够粗略带过,必须加以详细的分析和解读,这部分我选择以讲授为主,重点强调机械能守恒定律的两种表达方式的物理意义:
即:增量式 -Ep=△Ek/△Ep+△Ek=0;总量式EK1+EP1=EK2+EP2
增量式所体现的正是我们在第一部分教学中让学生思考的, “一种能量减少,必然导致另一种能量的增加”。总量式则体现了前后两个状态量——初末状态机械能之间的守恒关系。
3、机械能守恒定律的适用条件
学生对机械能守恒定律的适用条件应该有明确的认识,并且会根据适用条件判断具体过程中机械能是否守恒,这是应用机械能守恒定律解决问题的前提。因此,这部分内容是整个第一课时教学的重中之重。我的教学安排是在顺利推导出机械能守恒定律的表达式后,仍借用伽利略摆的模型和弹簧振子模型,启发并引导学生思考摆球的受力情况和各力的做功情况,得出:只有重力做功和弹力做功,系统的动能和势能可以相互转化,但总的机械能保持不变。在巩固训练环节中,我选取了常见的实例,第一组习题是重力势能和动能间的转化,第二组习题是弹性势能和动能间的转化,让学生判断各个情景中机械能是否守恒。每安排一组判断性习题之后,我会适当引导学生总结,让学生思考:只受重力与只有重力做功有何区别?通过讨论与交流使学生更深刻地认识和掌握机械能守恒定律成立的条件,正确理解“只有重力做功和弹力做功”的真正含义是:1、物体只受重力(或弹力)作用;2、物体除受重力(或弹力)外,还受其他力作用,但其他力不做功或代数和为零。
从学生的学习情况来看,这部分内容的处理基本达到了教学设计的要求,学生能够判断一些简单情景中机械能是否守恒。不足之处在于,所举的实例难以涵盖所有的情景,课堂时间有限,难以展开讲解。所以,在今后教学中,我应该注重基本方法和基本思路的形成,培养学生独立分析的能力。只有让学生掌握了最基本和最朴实的物理思想方法,才能以不变应万变,真正做到让学生举一反
8、高一物理《万有引力定律》优秀教学反思
3月30日上午10点,我在东山中学完成了学员汇报课。通过自己课堂上的教学体验和各听课老师的点评,我感觉收益良多,在肯定自己工作上一些优点的同时,也暴露出自己存在的一些不足。
在整个教学过程中,我主要突出以下几个方面:一、授课思路清晰明了,学生理解起来容易;二、注重新课标的教学要求,做到以教师引导为主,学生全程参与,从提出问题到解决问题都注重发挥学生自主探索的能动性;三、注重课堂气氛的调动,从课前的引入到各部分内容的过渡都力求做到自然、有趣,寻求课堂的“笑点”,让学生在愉快的氛围中学习知识;四、做到根据学生的实际情况,把握课堂讲解的深度及课堂练习的难度。
在不足方面,许多老师都提到语言的严谨性和规范性。这点确实也是我缺乏的一个方面。物理这门学科,在描述物理情景、建立物理模型的过程中都需要注重语言的严密性与规范性,只有正确表述才能引导学生进行正确的分析和理解。在其他细节上我还要再进行琢磨,例如在讲引力常量时,除了介绍卡文迪许的.实验外,还可以向学生介绍实验室的荣誉,让学生知道该实验培养了许多位诺贝尔奖获得者,是举世闻名的“诺贝尔奖摇篮”。这样可以启发学生对自然科学的求知欲,引导学生投身科学研究的兴趣。另外,在教学中要将物理方法与思想介绍给学生,例如,牛顿的万有引力是将轨迹看做是椭圆轨道得出的;扭秤实验应用了放大思想等。
在以后的教学中,我会针对自身存在的不足,勤加锻炼,从基本工做起,从细节处花心思,不断使自己的教学水平等到提高。