教学反思

分数乘除法解决问题的教学反思

2023-09-01 12:33:21

  分数乘除法解决问题的教学反思

分数乘除法解决问题的教学反思

1、分数乘除法解决问题的教学反思

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的`逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

2、《分数除法解决问题》教学反思

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

3、《用分数乘除法解决问题》的教学反思

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  体亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的'关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

4、分数乘除法解决问题的教学反思

  一、教材的处理

  按照教材安排,用分数乘法解决数学问题是在第二单元,用分数除法解决数学问题是在第三单元。如果分开来进行教学,学生由于受定式影响,学分数乘法应用题时,都用乘法;学分数除法时又都用除法,看似掌握很好,一旦混合一部分理解能力较差的学生就会混淆,看来还没有掌握“求一个数的几分之几是多少?”和“已知一个数的几分之几是多少,求这个数”这类题的分析方法。因此,我们就把两类应用题放在一节课进行对比教学。

  二、运用了体验式教学模式。

  启动体验阶段。我通过提出“我们为什么要学习数学?”来引导学生明确学习的目的性,从而调动学生学好本课知识的积极性。

  亲历时阶段。首先是自主体验,通过学生自己的独立思考,列式计算;初步获得解决问题的方法;接着是小组体验,通过小组讨论,逐步形成共识;最后是班级交流,呈现学生的不同解题策略,分享他人的成果。

  总结内化阶段。引导学生比较两道例题,找出两道例题的异同,感悟到解决问题的一般方法。

  应用提升阶段。这个环节分成2步,(1)基本练习,通过比较,进一步巩固解决此类问题的一般方法。

  (2)拓展练习,通过让学生解决较难的此类问题,进一步培养学生分析问题、解决问题的能力。

  三、关注解决问题的方法指导

  这节课,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法。首先通过让学生独立做、小组讨论、全班交流等方法得出解决这类数学问题的一般方法:先划出题中的关键句、圈出单位“1”,再写出关系式,然后代入数据,最后列式解答。

  四、不足之处

  在练习时,大部分学生能用所学的方法来解决问题,但仍有个别学生用自己的方法来解决问题。对这少部分学生,教师既要肯定他们的方法是正确的,但要引导他们最好采用所学的一般方法, 这样便于学习“稍难的分数、百分数的解决问题”。

  总之,数学教学注重的是培养学生的`逻辑思维。所以不管在什么类型的应用题教学中,分析数量关系应该是教学的重中之重,我们应该潜移默化的给学生渗透一些分析问题的方法,提高学生分析问题的能力。

5、《分数乘除法解决问题》教学反思

  最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:

  1、一找、二看、三判断

  分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。

  2、弄清对应量、对应分数、单位‘1

  教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1 ”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的.关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。

  3、线段图、数量关系、关系转化

  (1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。

  (2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。

  (3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。

  总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。

6、《分数除法解决问题》教学反思

  分数除法应用即用分数除法的知识解决问题是在学习了分数乘除法和用乘法解决问题的基础上进行教学的。课本例题以人体生理常识为内容载体,引导学生找出等量关系,列方程解答比较简单的分数除法实际问题。具体内容为

  例1:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。我体内有28千克的水分,可是我的体重才是爸爸的7/15。(1)小明的体重是多少千克?(2)小明的爸爸体重是多少千克?

  去年我也教学过这部分内容,当教师把这一部分知识全部呈现给学生时,学生要解题,要选择需要的信息,感觉很费劲。今年我改变的`呈现的方式,分两部分来教学这些内容:

  第一部分:

  第一环节,教师说明人体内水分的含量,学生知道后,只出示“儿童的体内的水分约占体重的4/5”这一条信息,让学生观察,说明题目中包含了哪两个量,并用数量关系式表示出它们之间的关系。引导学生得出:体重×4/5=水分的重量

  教师口头出示:一个儿童的体重为45千克,让学生计算出他体内的水分有多少千克?学生很容易就口答出了答案。之后我板书:小明体内的水分重20千克,小明的体重是多少千克?让学生尝试解决。结果有5名学生选择用除法直接计算,其他学生选择用方程解决。

  在教学后,我引导学生分析本节课所学的解决问题知识与以前学习的有何不同,引导学生找出这类问题的特点,总结出当单位1是未知时,可以直接用算术方法,也可以用方程解决。

  第二部分:

  在学生计算出小明的体重后,我再出示另一个条件“小明的体重占爸爸体重的7/15,爸爸的体重是多少千克?”学生独立解决,本来解决第一个问题我感觉还蛮顺利的,可是在此题计算中我尝到了失败的滋味,学生找数量之间的关系,选择用除法解决都很费力。列算式为25×7/15者有6个同学,列方程为25X=7/15的有2人。我很是失望,我甚至不知道怎么教学这些知识了,最终我以“下节课再说”来结束了这几课。

  下课后我在反思,也和平行班的教师谈论,她们也感觉有些困难,“已知一个数的几分之几是多少,求这个数”的问题,如果用算术方法解决,需要进行逆向思维,教材呈现的是顺向思考,让学生根据分数乘法的意义,找到等量关系列出方程解答。可是在教学中我感觉出来学生对于数量关系的理解个别同学很有困难,好像去年教学这部分知识时没有这么困难,我又在思索以前对这部分知识的教学。

  今天我又在另一个班教学这部分知识,基本思路还是和昨天一样。不过经过昨天的思考,我添加了一个课前预习环节:总结我们学习过的分数乘除法解决问题的类型:

  1.求一个数的几分之几是多少的问题。2.已知一个数的几分之几是多少,求这个数的问题。

  让学生举例,其他学生口答问题。在此基础上我才出示以上教学内容,进行教学。结果也还是不能令我满意。我还得继续反思我的这节课。

7、分数乘除法解决问题的教学反思

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:

  ( )×2/5=( )。

  好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的'关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.

8、分数除法解决问题教学反思

  分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的'基础上进行教学的。

  成功之处:

  沟通分数乘除法解决问题,加强知识的横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:

  总数÷份数=每份数总数÷每份数=份数

  路程÷时间=速度路程÷速度=时间

  总价÷数量=单价总价÷单价=数量

  在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?

  在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。

  不足之处:

  1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。

  2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。

  改进之处:

  1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。

  2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。

9、《分数乘除法解决问题》的教学反思

  (看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的'思维能不能得到提高?让我们共同讨论~于华静)

  最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:

  1、一找、二看、三判断

  分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。

  2、弄清对应量、对应分数、单位‘1

  教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1 ”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。

  3、线段图、数量关系、关系转化

  (1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。

  (2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。

  (3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。

  总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多

  加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。

相关文章

推荐文章