教学反思

用待定系数法确定一次函数表达式的教学反思

2023-09-02 16:44:17

  用待定系数法确定一次函数表达式的教学反思

用待定系数法确定一次函数表达式的教学反思

1、用待定系数法确定一次函数表达式的教学反思

  学生已经学习过一次函数的图像和性质,在本节课开始之前,用一个具体的一次函数表达式带领学生回顾已学知识。

  根据函数表达式,我们可以得到函数图像与坐标轴的交点坐标,可以知道函数图像是上升还是下降,可以很快的`利用k值确定y随x的变化而怎样变化。这时,抛给学生一个问题:在函数表达式未知的情况下,能不能用已知的函数图像上的点坐标或其他信息确定出这个函数的表达式?

  由此引入,给出今天所要学习的一个新方法—待定系数法,让学生阅读课本材料,和学生一起总结利用待定系数法确定一次函数表达式的步骤,简单概括为:设(一次函数或正比例函数表达式)列(方程组或方程)解(方程组或方程)答(写出函数表达式)。给出一个点坐标,可以确定正比例函数的表达式,让学生思考并分析总结确定一次函数表达式需要两个点,而确定正比例函数表达式只需要一个点。

  之后的主要内容是练习,采用让学生上台板演,请其他学生指正错误的方法,教师要强调解题过程的规范性。之后继续练习课本习题,并总结题目类型——有直接给出点坐标的,有根据图像确定点坐标的,有根据实际问题提取有用信息的等不同的给点类型,告诉学生如何从不同的题目中得到有用的条件,然后利用待定系数法求解函数表达式。

2、《求二次函数表达式》教学反思

  作为一名人民老师,教学是重要的任务之一,写教学反思可以很好的把我们的教学记录下来,快来参考教学反思是怎么写的吧!下面是小编帮大家整理的《求二次函数表达式》教学反思范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

  求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。下面谈谈本人在教学和复习求函数解析式的具体做法:

  一、使学生掌握待定系数法。

  待定系数法是初中数学的一种重要解题方法,对于每位学生都必须掌握,并能熟练应用此法来求函数的解析式。待定系数法的基本步骤是:假设所求函数的解析式;把已知的量代入函数关系式,联列方程(组);求出方程(组)的'解。

  二、让学生明确二次函数两种关系式。

  (1)、二次函数一般关系式:y=ax2+bx+c(a≠0)

  (2)二次函数顶点式:y=a(x—h)2+k

  对于以上这两种函数,要求学生理解关系式,及其性质和图象。

  y=ax2+bx+c(a≠0)这是一个二元二次方程,若要求a、b、c,必须知道三个不同的解,然后联立方程组,从而求出a、b、c的值。

  三、本节课自己的感想

  曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。

  《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。

3、用待定系数法确定一次函数表达式的教学反思

  学生已经学习过一次函数的图像和性质,在本节课开始之前,用一个具体的一次函数表达式带领学生回顾已学知识。

  根据函数表达式,我们可以得到函数图像与坐标轴的交点坐标,可以知道函数图像是上升还是下降,可以很快的`利用k值确定y随x的变化而怎样变化。这时,抛给学生一个问题:在函数表达式未知的情况下,能不能用已知的函数图像上的点坐标或其他信息确定出这个函数的表达式?

  由此引入,给出今天所要学习的一个新方法—待定系数法,让学生阅读课本材料,和学生一起总结利用待定系数法确定一次函数表达式的步骤,简单概括为:设(一次函数或正比例函数表达式)列(方程组或方程)解(方程组或方程)答(写出函数表达式)。给出一个点坐标,可以确定正比例函数的表达式,让学生思考并分析总结确定一次函数表达式需要两个点,而确定正比例函数表达式只需要一个点。

  之后的主要内容是练习,采用让学生上台板演,请其他学生指正错误的方法,教师要强调解题过程的规范性。之后继续练习课本习题,并总结题目类型——有直接给出点坐标的,有根据图像确定点坐标的,有根据实际问题提取有用信息的等不同的给点类型,告诉学生如何从不同的题目中得到有用的条件,然后利用待定系数法求解函数表达式。

4、一次函数与二元一次方程组教学反思

  相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。

  在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的.结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。

  利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。

  要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。

5、二元一次方程组与一次函数之间的关系教学反思

  1、合理使用教材

  教材通过引例对图像方法与代数方法的比较,使学生了解解决应用问题的策略和方法是多样性的,同时也使学生理解图像方法与代数方法在解决具体问题中各自的优劣,从而对方法作出正确的选择.对于教材的这一方面的使用,教师应根据自己学生的特点,选择合理的方式去让学生理解不同方法去解决同一问题。

  2、突出重点、突破难点

  本节课主要要求学生能够利用二元一次方程组解决一次函数的解析式问题,根据一次函数解析式进一步解决相关的一些问题。要让学生理解为什么要用二元一次方程组去求解一次函数的'解析式的必要性,从而掌握本堂课的基础知识。在教学的过程中,要让学生充分理解图像方法和代数方法解决问题的特点,在这个基础上,学生掌握用二元一次方程组解决一次函数的解析式问题才会有着坚实的理论基础,有关这一方面的题目要让学生充分讨论,其理解才会深刻;同时要以这一部分的知识为载体,结合教材例题,在补充分段图形题,甚至表格题,让学生充分理解用方程的思想去解决函数问题。

6、《一次函数解析式的求法》教学反思

  本节课,我们讨论了一次函数解析式的求法,利用一次函数的知识解决实际问题。求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;待定系数法是求函数解析式的基本方法,用“数”和“形”结合的思想学习函数。

  通过本节课的教学发现:

  1、有一小部分的学生还是不懂得看函数图像。

  2、用一次函数解析式解决实际问题时,不注意自变量的取值范围。

  3、结合图象求一次函数解析式,不理解函数解析式和解方程组间的转化。

  另外,运用知识解决实际问题是学生学习的目的',是重点,但也是学生的难点,需要慢慢的加强训练。

  1、一次函数的图象在日常生活中大量存在,通过观察和应用这些图象可以帮助我们获取更多的信息,解决更多的实际问题。

  2、我们在解题的过程中,是先把实际问题转化为一次函数的问题,再利用一次函数的知识解决。

相关文章

推荐文章