初中数学《单项式的乘法》优秀一等奖说课稿
1、初中数学《单项式的乘法》优秀一等奖说课稿
说目标
会进行单项式与多项式相乘的运算。
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
说重点难点
重点
单项式与多项式相乘的运算法则及其运用
难点
灵活地运用单项式与多项式相乘的运算解决数学问题。
说过程
一、复习导入
1、计算单项式乘单项式时,要把系数和同底数幂分别相乘,这样做的依据是什么?体现了怎样的数学思想?
2、你能用字母表示乘法的分配律吗?
3、类似的,对于单项式乘以多项式,比如
你能将它转化成已经学过的单项式乘单项式来计算吗?
二、新课讲解
探究新知
1、怎样计算?
学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:
教师指出,可以把单项式看成一个数,把多项式看成3个数的和。
2、下面的运算该如何转化成单项式乘单项式呢?请你试一试:
利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。
3、你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1、计算:
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
例2求的值,其中
提问学生,可以直接把带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?
引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、小结
师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
五、布置作业
P41第7题
2、初中数学《单项式的乘法》优秀一等奖说课稿
各位评委、老师:
大家好!我说课的内容是人教版义务教育课程标准实验教科书八年级上册第十五章第二大节第四课单项式的乘法,下面我从教材分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。
一、教材分析
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
二、教学目的
1.使学生理解单项式乘法法则,会进行单项式的乘法运算。
2.通过单项式乘法法则的推导,发展学生的逻辑思维能力。
教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。
三、教学重点、难点:
重点:掌握单项式乘法法则。
(这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:多种运算法则的综合运用
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的.乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
四、教学方法
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
五、教学过程
本节课的教学过程主要包括以下五个环节:1、创设问题情境2、新课学习3、反馈练习4、小结5、作业布置。
(1)创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题1、问题2的设置进而明确本节课的学习内容。
(2)新课学习
新课学习包括单项式乘法法则的推导和例题讲解。
①单项式乘法法则的推导
由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。
在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。
②例题讲解
本着循序渐进的原则,对例题按按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。
在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。
(3)反馈练习
根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。
(4)小结
本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。
(5)布置作业
数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。
六、教学评价、反馈措施
本节课采用了不同的反馈手段和较多的反馈练习。
1、设计分段练习。例如练习一练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。
2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。
3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。
这就是我对本节课总的设计过程,具体过程将体现在我的课堂教学之中,谢谢大家!
3、初中数学《单项式的乘法》优秀一等奖说课稿
一、教材分析
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
二、教学目的
1。使学生理解单项式乘法法则,会进行单项式的乘法运算。
2。通过单项式乘法法则的推导,发展学生的逻辑思维能力。
教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。
三、教学重点、难点:
重点:掌握单项式乘法法则。
(这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:多种运算法则的综合运用
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
四、教学方法
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
五、教学过程
本节课的教学过程主要包括以下五个环节:1、创设问题情境2、新课学习3、反馈练习4、小结5、作业布置。
(1)创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题1、问题2的设置进而明确本节课的学习内容。
(2)新课学习
新课学习包括单项式乘法法则的推导和例题讲解。
①单项式乘法法则的推导
由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的'思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。
在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。
②例题讲解
本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。
在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。
(3)反馈练习
根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。
(4)小结
本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。
(5)布置作业
数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。
六、教学评价、反馈措施
本节课采用了不同的反馈手段和较多的反馈练习。
1、设计分段练习。例如练习一———————练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。
2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。
3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。
这就是我对本节课总的设计过程,具体过程将体现在我的课堂教学之中,谢谢大家!
4、七年级数学下册《单项式与多项式的乘法》教学设计一等奖
作为一无名无私奉献的教育工作者,就难以避免地要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么教学设计应该怎么写才合适呢?以下是小编为大家整理的七年级数学下册《单项式与多项式的乘法》教学设计,仅供参考,希望能够帮助到大家。
教学目标
会进行单项式与多项式相乘的运算。
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点难点
重点
单项式与多项式相乘的.运算法则及其运用
难点
灵活地运用单项式与多项式相乘的运算解决数学问题。
教学过程
一、复习导入
1. 计算单项式乘单项式时,要把系数和同底数幂分别相乘,这样做的依据是什么?体现了怎样的数学思想?
2. 你能用字母表示乘法的分配律吗?
3. 类似的,对于单项式乘以多项式,比如
你能将它转化成已经学过的单项式乘单项式来计算吗?
二、新课讲解
探究新知
1.怎样计算 ?
学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:
教师指出,可以把单项式看成一个数,把多项式看成3个数的和。
2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:
(1) ;(2)
利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。
3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1. 计算:
(1) ; (2)
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
例2 求 的值,其中
提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?
引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂练习
基础练习:
1.计算:
(1) ; (2) ;
(3) ; (4)
2.先化简,再求值:
,其中
学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。
提高练习
3.已知 ,求代数式 的值。
4.已知 ,求 的值。
让学生自己分析,相互讨论,丰富解决数学问题的经验。
五、小结
师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P41 第7题
5、初中数学《整式的乘法》教案一等奖设计
教学目标
①感受生活中幂的运算的存在与价值.
②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.
③逐步形成独立思考、主动探索的习惯.
④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.
教学重点与难点
重点:幂的三个运算性质.
难点:幂的三个运算性质.
教学设计
创设情境导入新课
问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?
从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.
学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?
根据乘方的意义可以知道:
探究新知1.探一探根据乘方的意义填空:
从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.
学生独立思考后回答,教师板演.
2.猜一猜
问:看看计算结果,你能发现结果有什么规律吗?
学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.
3.说一说
am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)
即同底数幂相乘,底数不变,指数相加.
注意性质中的m、n的取值范围.
注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.
4.想一想
am×an×ap=?
5.做一做
例1教科书第142页的例1(1)~(4)
(5)—a3a5;
(6)(x+1)2(x+1)3
同底数幂的性质很容易推广到三个以上的同底数幂相乘.
在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.
6.自主学习
根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.
7.做一做
例2教科书第171页的例2(1)~(4)
(5) —(x3)4x2
8.想一想
让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?
学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的.幂相乘.
那么,(abc)n=?
注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.
9.做一做
例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3
例4 计算:x(x2)3—2x4x2
比一比
这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.
深入探究例5计算:(1)(—8)2004(—0。125)2005(2)(—2)2n+1+2(—2)2n(n为正整数).
在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.
议一议
下面的计算对不对?如果不对,应当怎样改正.
(1)a3a3=a6; (2)b4b4=2b4;
(3)x5+x5=x10; (4)y7y=y8;
(5)(a3)5=a8; (6)a3a5=a15;
(7)(a2)3a4=a9; (8)(xy3)2=xy6;
(9)(—2x)3=—2x3
注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.
小结
组织学生讨论和辨析三个运算性质.
课外巩固
1.必做题:教科书第148页习题15。1第1、2题.
2.备选题:
(1)计算:
(2)计算:am—1an+2+am+2an—1+aman+1
(3)已知:am=7,bm=4,则(ab)2m=______
(4)已知:3x+2y—3=0,则27x9y=___________
6、初中数学《有理数乘法》教案一等奖
一、内容和内容解析
1。内容
有理数乘法法则。
2。内容解析
有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。
与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。
基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则。
二、目标及其解析
1。目标
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法。
(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性。
2。目标解析
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果。
达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程。
三、教学问题诊断分析
有理数的乘法与小学学习的乘法的区别在于负数参与了运算。本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性。上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。
本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。
四、教学过程设计
问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。
设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。
问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?
3×3=9,
3×2=6,
3×1=3,
3×0=0。
追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?——左边都有一个乘数3。
(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。
设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。
教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。
追问2:根据这个规律,下面的两个积应该是什么?
3×(—2)= ,
3×(—3)= 。
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。
设计意图:让学生自主构造算式,加深对运算规律的理解。
追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。
设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。
问题3观察下列算式,类比上述过程,你又能发现什么规律?
3×3=9,
2×3=6,
1×3=3,
0×3=0。
鼓励学生模仿正数乘负数的过程,自己独立得出规律。
设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。
追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(—1)×3= ,
(—2)×3= ,
(—3)×3= 。
练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。
追问2 :类比正数乘负数规律的.归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。
追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。
问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(—3)×3= ,
(—3)×2= ,
(—3)×1= ,
(—3)×0= 。
追问1:按照上述规律填空,并说说其中有什么规律?
(—3)×(—1)= ,
(—3)×(—2)= ,
(—3)×(—3)= 。
设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。
问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。
追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?
学生独立思考、回答。如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。
设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。
学生独立完成后,全班交流。
教师说明:在(3)中,我们得到了
=1。与以前学习过的倒数概念一样,我们说
与—2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。
追问:在(2)中,8和—8互为相反数。由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘—1之间的关系(反过来有—8=8×(―1))。
例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为—6°C,攀登3km后,气温有什么变化?
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。
小结、布置作业
请同学们带着下列问题回顾本节课的内容:
(1)你能说出有理数乘法法则吗?
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。
(4)你能举例说明符号法则“负负得正”的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结。
作业:教科书第30页,练习1,2,3;第37页,习题1。4第1题。
五、目标检测设计
1。判断下列运算结果的符号:
(1)5×(—3);
(2)(—3)×3;
(3)(—2)×(—7);
(4)(+0。5)×(+0。7)。
设计意图:检测学生对有理数乘法的符号法则的理解。
2计算:
7、二年级数学《乘法的初步认识》优秀教案一等奖
教学目标:1、体会乘法的意义。
2、认识乘号“×”,初步掌握乘法算式的写法和读法。
3、通过小组活动,扩大参与讨论和表达的机会,培养口头表达能力,感受数学与生活的密切联系。
教学重点:理解乘法的.意义。
教学难点:通过直观认识,从相同数相加引出乘法。理解乘法的含义。
教学准备:小棒、图片
教学过程:
一、 导入
1、 实物演示运算符号:-+×板书课题
2、 看主题图
小朋友们在玩什么?你能提出什么问题?该怎样列式?
二、 探究新知
1、 游戏:摆小棒
想一个最喜欢的图案,小组内摆一摆,你能摆出多少个?
小组内说一说,你摆的是什么?比比谁摆动最多?一共用了多少根小棒?
2、 班内交流
板书:10+10+10=30
5+5+5+5+=20
3+3+3+3+3+3=18
这些算式写的时候怎样?有没有好的办法变简短?
数3的个数(6)个3
6×3 读作:6乘3,也可以写成3×6,表示6个3相加
|
乘号先写/后写\
3、 说另外两题怎样用乘法表示
板演算式
三、 巩固练习
1、 改写
4+4+4=( )×( )
6+6+6+6=( )×( )
2+2+2+2+2=( )×( )
2、3只瓢虫,每只背上7个黑点,一共多少个黑点?
3、小象吹泡泡每排4个,共3排,用算式表示
四、总结
你有哪些收获?