教案

初中数学《整式的乘法》教案一等奖设计

2023-07-31 18:12:11

  初中数学《整式的乘法》教案一等奖设计

初中数学《整式的乘法》教案一等奖设计

1、初中数学《整式的乘法》教案一等奖设计

  教学目标

  ①感受生活中幂的运算的存在与价值.

  ②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.

  ③逐步形成独立思考、主动探索的习惯.

  ④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.

  教学重点与难点

  重点:幂的三个运算性质.

  难点:幂的三个运算性质.

  教学设计

  创设情境导入新课

  问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?

  从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.

  学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?

  根据乘方的意义可以知道:

  探究新知1.探一探根据乘方的意义填空:

  从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.

  学生独立思考后回答,教师板演.

  2.猜一猜

  问:看看计算结果,你能发现结果有什么规律吗?

  学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.

  3.说一说

  am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)

  即同底数幂相乘,底数不变,指数相加.

  注意性质中的m、n的取值范围.

  注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.

  4.想一想

  am×an×ap=?

  5.做一做

  例1教科书第142页的例1(1)~(4)

  (5)—a3a5;

  (6)(x+1)2(x+1)3

  同底数幂的性质很容易推广到三个以上的同底数幂相乘.

  在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.

  6.自主学习

  根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.

  7.做一做

  例2教科书第171页的例2(1)~(4)

  (5) —(x3)4x2

  8.想一想

  让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?

  学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的.幂相乘.

  那么,(abc)n=?

  注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.

  9.做一做

  例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3

  例4 计算:x(x2)3—2x4x2

  比一比

  这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.

  深入探究例5计算:(1)(—8)2004(—0。125)2005(2)(—2)2n+1+2(—2)2n(n为正整数).

  在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.

  议一议

  下面的计算对不对?如果不对,应当怎样改正.

  (1)a3a3=a6; (2)b4b4=2b4;

  (3)x5+x5=x10; (4)y7y=y8;

  (5)(a3)5=a8; (6)a3a5=a15;

  (7)(a2)3a4=a9; (8)(xy3)2=xy6;

  (9)(—2x)3=—2x3

  注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.

  小结

  组织学生讨论和辨析三个运算性质.

  课外巩固

  1.必做题:教科书第148页习题15。1第1、2题.

  2.备选题:

  (1)计算:

  (2)计算:am—1an+2+am+2an—1+aman+1

  (3)已知:am=7,bm=4,则(ab)2m=______

  (4)已知:3x+2y—3=0,则27x9y=___________

2、初中数学《整式的乘法》教案一等奖设计

  15.1.1 整式

  教学目标

  1.单项式、单项式的定义.

  2.多项式、多项式的次数.

  3、理解整式概念.

  教学重点

  单项式及多项式的有关概念.

  教学难点

  单项式及多项式的有关概念.

  教学过程

  Ⅰ.提出问题,创设情境

  在七年级,我们已经学习了用字母可以表示数,思考下列问题

  1.要表示△ABC的周长需要什么条件?要表示它的面积呢?

  2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?

  结论:

  1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ch.

  2.小王的平均速度是 .

  问题:这些式子有什么特征呢?

  (1)有数字、有表示数字的字母.

  (2)数字与字母、字母与字母之间还有运算符号连接.

  归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

  判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)

  代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

  Ⅱ.明确和巩固整式有关概念

  (出示投影)

  结论:(1)正方形的周长:4x.

  (2)汽车走过的路程:vt.

  (3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长宽高,即a3.

  (4)n的相反数是-n.

  分析这四个数的特征.

  它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

  请同学们阅读课本P160~P161单项式有关概念.

  根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

  结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.

  问题:vt中v和t的指数都是1,它不是一次单项式吗?

  结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

  生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

  写出下列式子(出示投影)

  结论:(1)t-5.(2)3x+5y+2z.

  (3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.

  (4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为32、43,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

  我们可以观察下列代数式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

  这样推理合情合理.请看投影,熟悉下列概念.

  根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

  a+b+c的项分别是a、b、c.

  t-5的项分别是t、-5,其中-5是常数项.

  3x+5y+2z的项分别是3x、5y、2z.

  ab-3.12r2的项分别是 ab、-3.12r2.

  x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

  这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也体会到符号的`魅力所在.我们把单项式与多项式统称为整式.

  Ⅲ.随堂练习

  1.课本P162练习

  Ⅳ.课时小结

  通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.

  Ⅴ.课后作业

  1.课本P165~P166习题15.1─1、5、8、9题.

  2.预习“整式的加减”.

  课后作业:《课堂感悟与探究》

  15.1.2 整式的加减(1)

  教学目的:

  1、 解字母表示数量关系的过程,发展符号感。

  2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

  教学重点:

  会进行整式加减的运算,并能说明其中的算理。

  教学难点:

  正确地去括号、合并同类项,及符号的正确处理。

  教学过程:

  一、 课前练习:

  1、填空:整式包括 和

  2、单项式 的系数是 、次数是

  3、多项式 是 次 项式,其中二次项

  系数是 一次项是 ,常数项是

  4、下列各式,是同类项的一组是( )

  (A) 与 (B) 与 (C) 与

  5、去括号后合并同类项:

  二、 探索练习:

  1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为

  这两个两位数的和为

  2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为

  这两个三位数的差为

  议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

  说说你是如何运算的?

  整式的加减运算实质就是

  运算的结果是一个多项式或单项式。

  三、 巩固练习:

  1、填空:(1) 与 的差是

  (2)、单项式 、 、 、 的和为

  (3)如图所示,下面为由棋子所组成的三角形,

  一个三角形需六个棋子,三个三角形需

  ( )个棋子,n个三角形需 个棋子

  2、计算:

  (1)

  (2)

  (3)

  3、(1)求 与 的和

  (2)求 与 的差

  4、 先化简,再求值: 其中

  四、 提高练习:

  1、 若A是五次多项式,B是三次多项式,则A+B一定是

  (A) 五次整式 (B)八次多项式

  (C)三次多项式 (D)次数不能确定

  2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

  记0分,那么某队在比赛胜5场,平3场,负2场,共积多

  少分?

  3、一个两位数与把它的数字对调所成的数的和,一定能被14

  整除,请证明这个结论。

  4、如果关于字母x的二次多项式 的值与x的取值无关,

  试求m、n的值。

  五、 小结:整式的加减运算实质就是去括号和合并同类项。

  六、 作业:第8页习题1、2、3

3、初中数学《整式的乘法》教案一等奖设计

  一、内容和内容解析

  1。内容

  有理数乘法法则。

  2。内容解析

  有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。

  与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。

  基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则。

  二、目标及其解析

  1。目标

  (1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法。

  (2)能说出有理数乘法的符号法则,能用例子说明法则的合理性。

  2。目标解析

  达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果。

  达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程。

  三、教学问题诊断分析

  有理数的乘法与小学学习的乘法的区别在于负数参与了运算。本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性。上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。

  本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。

  四、教学过程设计

  问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?

  教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。

  设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。

  问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?

  3×3=9,

  3×2=6,

  3×1=3,

  3×0=0。

  追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

  如果学生仍然有困难,教师给予提示:

  (1)四个算式有什么共同点?——左边都有一个乘数3。

  (2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3。

  设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。

  教师:要使这个规律在引入负数后仍然成立,那么,3×(—1)=—3,这是因为后一乘数从0递减1就是—1,因此积应该从0递减3而得—3。

  追问2:根据这个规律,下面的两个积应该是什么?

  3×(—2)= ,

  3×(—3)= 。

  练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

  设计意图:让学生自主构造算式,加深对运算规律的理解。

  追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

  先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。

  设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。

  问题3观察下列算式,类比上述过程,你又能发现什么规律?

  3×3=9,

  2×3=6,

  1×3=3,

  0×3=0。

  鼓励学生模仿正数乘负数的过程,自己独立得出规律。

  设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。

  追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

  (—1)×3= ,

  (—2)×3= ,

  (—3)×3= 。

  练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

  追问2 :类比正数乘负数规律的.归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

  先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。

  追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

  设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。

  问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

  (—3)×3= ,

  (—3)×2= ,

  (—3)×1= ,

  (—3)×0= 。

  追问1:按照上述规律填空,并说说其中有什么规律?

  (—3)×(—1)= ,

  (—3)×(—2)= ,

  (—3)×(—3)= 。

  设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。

  问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

  学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。

  追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

  学生独立思考、回答。如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。

  设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。

  学生独立完成后,全班交流。

  教师说明:在(3)中,我们得到了

  =1。与以前学习过的倒数概念一样,我们说

  与—2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。

  追问:在(2)中,8和—8互为相反数。由此,你能说说如何得到一个数的相反数吗?

  设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘—1之间的关系(反过来有—8=8×(―1))。

  例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为—6°C,攀登3km后,气温有什么变化?

  设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。

  小结、布置作业

  请同学们带着下列问题回顾本节课的内容:

  (1)你能说出有理数乘法法则吗?

  (2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

  (3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。

  (4)你能举例说明符号法则“负负得正”的合理性吗?

  设计意图:引导学生从知识内容和学习过程两个方面进行小结。

  作业:教科书第30页,练习1,2,3;第37页,习题1。4第1题。

  五、目标检测设计

  1。判断下列运算结果的符号:

  (1)5×(—3);

  (2)(—3)×3;

  (3)(—2)×(—7);

  (4)(+0。5)×(+0。7)。

  设计意图:检测学生对有理数乘法的符号法则的理解。

  2计算:

4、初中数学《整式的乘法》教案一等奖设计

  一、教学目标。

  1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。

  2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。

  3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。

  二、教学设想。

  本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。

  三、教材分析。

  本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。

  四、重点,难点。

  1、教学重点:单项式,单项式系数及单项式次数概念。

  2、教学难点:区别单项式的系数和次数。

  五、教学方法。

  通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。

  六、教学过程。

  (一)创设情境,激趣导入。

  问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:

  青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?

  根据速度,时间和路程的关系:路程=速度*时间则

  它2小时行驶的路程:100*2=200(千米),

  它3小时行驶的路程:100*3=300(千米),

  它t小时行驶的路程:100*t=100t(千米),

  字母t表示时间,用含有字母t的式子100t表示路程。

  问题2:用含有字母的式子填空。解答教科书第54面思考题。

  (1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。

  (二)合作交流,探索新知。

  1、单项式概念的探索。

  (1)以上几个式子有什么共同特征:

  6a2是6×a×a的乘积。

  a3是a×a×a的乘积。

  2.5x是2.5×x的乘积。

  vt是v×t的乘积。

  -n是-1×n的乘积。

  归纳:都表示数与字母的积。

  (2)引出单项式的概念:

  ①教学活动:

  倾听、思考、分析、思考。

  ②师生互动:

  列式解答、倾听、理解、思考、归纳。

  倾听、理解概念、举例集体评议。

  ③学生活动:

  从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。

  培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。

  培养学生的分析,思考及归纳能力,加深对概念的了解.

  培养学生的评价能力,为概念的引出.

  (3)让学生举出单项式的.例子。

  2、单项式系数和次数的探索。

  问题1:以上单项式有什么结构特点。

  由数字因数和字母因数两部分组成。

  问题2:分别说出它们的数字因数和各字母的指数。

  单项式中的数字因数,叫做单项式的系数。

  一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

  交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。

  教师巡视指导,请各别学生展示交流成果。

  3,例题教学

  教科书55页例1

  学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。

  (三)练习巩固,熟练技能。

  1、教科书第56页练习第1,2题。

  2、下列各式:-x+3,6x,其中是单项式的是。

  (四)总结反思,拓展延伸。

  1、让学生谈谈本节课的收获。

  2、通过今天的学习,你想进一步探究的问题是什么

  七、板书设计。

  2.1 整式

  一、青藏铁路问题(略)。

  二、单项式的概念。

  单项式系数及次数的概念。

  三、例题讲解

  八、点评。

  本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。

5、初中数学《整式的乘法》教案一等奖设计

  【教学目标】

  1、理解同类项、合并同类项的概念。

  2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。

  3、感受其中的“数式通性”和类比的数学思想。

  【教学重点】

  理解同类项的概念;掌握合并同类项法则。

  【教学难点】

  正确运用法则及运算律合并同类项。

  【教学过程】

  一、知识链接

  1、运用运算律计算下列各题。

  ①6×20+3×20=②6×(-20)+3×(-20)=

  2、口答。

  8个人+5个人=8只羊+5只羊=

  8个人+5只羊=

  [意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]

  二、探究新知

  探究一:一只蜗牛在爬一根竖立的竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?

  (1)请列式表示:,你能对上式进行化简计算吗?

  (2)说说化简计算的依据。

  [意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]

  探究二:根据以上式子的运算,化简下列式子。

  ①100t-252t②3x2+2x2

  ②3ab2-4ab2④2m2n3-5m2n3

  (1)上述各多项式的'项有什么共同特点?

  (2)上述多项式的运算有什么共同特点,有何规律?

  [意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]

  三、例题精炼

  例1、合并同类项。

  4x2+2x+7+3x-8x2-2

  例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。

  [意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]

  四、课堂小结

  这节课你学到了哪些知识?

  [意图:养成总结反思的好习惯。操作流程:交流→小组代表发言→师补充]

  五、课堂检测(略)

  [意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]

6、《整式的乘法》的教学反思

  篇一:整式的乘法教学反思

  《整式的乘法》是华师大版八年级上学期第十三章的一部分内容,主要包括同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法公式。整式乘法是整式乘除与因式分解的基础,是学好本章的关键,是教学的重点内容。而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。

  在这一部分教学时,我主要采用归纳式教学法。首先举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。例如a×a=a2,a×a×a=a3,a2×a3=a×a×a×a×a=a5··· 利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题,在相互纠正的过程中让学生逐步掌握运算法则,并能熟练的应用法则进行运算。

  教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。所以,通过本章的教学,使我更进一步的认识到数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。对于发现的问题,应及时解决,趁热打铁。

  数学知识是逻辑严密的知识体系,前面知识掌握的好坏会直接影响学生后面知识的学习效果。很多同学学会了有关幂的运算,但是在计算单项式乘单项式和单项式乘多项式时,还是出现了很多问题。主要问题出在正负号的变换,以及乘完后没有合并同类项,或者不会合并同类项。这两块内容都属于七年级时学生已经掌握的内容,在教学过程中就忽略了,没有再次进行强调,经过一段时间,学生容易将以前学过的知识遗忘,更难以将已有知识和新知识进行有机结合,从而找到它们之间的联系。在教学过程中,我不经意的就通过主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样,相当一部分的同学并没有将知识融会贯通,而我却没有高度重视,这样这些学生的问题会越积越多,最后导致部分同学对这部分内容掌握的不好。最后不得不再花时间进行有针对性的训练,以解决这个问题。通过对本章的教学我还发现,对学生容易出错问题要时时提醒。学生出现的问题,我以前常常当时提醒后就没有及时进行再反馈,认为学生应该掌握了,但实际情况是学生在下一次还会重复一样的错误。所以在以后的教学活动中更要利用有效的方法和针对性的措施去掌握学生的反馈情况,这样才能有针对性的做好教学设计,提高教学效率。精讲多练才能促进学生主动学习。精讲要有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。讲完后一定要让学生进行由浅入深的练习,通过练习看学生的掌握情况和问题所在。出现的问题要当堂解决。

  整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样运算(x+y)2=x2+y2。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。学生对老师依赖性强,缺乏主动钻研的习惯和精神。许多学生的自学能力很差,对于已经学过的知识点,说不清掌握了哪些,还有哪些问题没有解决,并且也提不出问题。学生对于练习中不会做的题或作业中不会做题,好多学生很少问,觉得老师都会讲,所以不用问。甚至,对于老师不布置的题目不主动去做的原因就是老师没有布置。课堂教学中老师布置的自学或思考讨论时,很多学生消极参与,被动地等待老师讲解。合作讨论探究效率极低,如果留足够的时间让学生合作交流,则很难完成教学任务,若直接给学生讲解,学生被动学习,不主动思考,又很难取得好的教学效果。

  针对上述遇到的问题,在右后的教学过程中,应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技

  能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。

  在教学活动中,要把基本理念转化为自己的教学行为, 处理好讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。

  篇二:《整式的乘法(1)》教学反思 新人教版

  通过本节课的教学实践,我再次体会到:课堂上的真正主人应该是学生。教师只是一名引导者,是一名参与者。一堂好课,师生一定会有共同的、积极的情感体验。本节课教学中,各知识点均是学生通过探索发现的,学生充分经历了探索与发现的过程,这正是新课程标准所倡导的教学方法。教学中没有将重点盯在大量的练习上,而是定位在知识形成的过程的探索,这是更加注重学生学习能力的培养的体现,实践证明这种做法是成功的。今后的教学中要继续注重引导学生自我探索与自我发现,注重挖掘教材的能力生长点,挖掘教材的内涵,着眼于学生终身发展的需要,为学生的终身发展奠定基础。

  篇三:整式的乘法教学设计及反思 黄欣

  教学目标:

  知识与技能:

  掌握整式的乘法的法则,会进行单项式与单项式的乘法的运算,熟练地进行整式的计算与化简。

  过程与方法:

  通过自主探索、自主发现、自主体验来真正理解法则的来源、本质和应用。 情感态度与价值观:

  通过对单项式与单项式的乘法法则的探索、猜想、体验及应用,感受学习的乐趣。

  教学重点:

  单项式与单项式相乘的法则。

  教学难点:

  迅速准确地进行整式的乘法运算及运算过程中的系数与符号问题。

  教学方法:

  先学后教,当堂训练。

  教学用时:

  1课时。

  教学过程:

  (一)通过复习,导出同底数幂的乘法、幂的乘方、积的乘方的公式。

  (二)新授。

  <一>出示自学目标:

  1、复习乘法的运算律。

  2、了解单项式乘法的法则的来历,掌握法则。

  3、学会运用单项式乘法的法则进行计算。出示自学提纲。

  <二>出示自学提纲:

  1、乘法运算律有哪些?

  2、同底数幂乘法的法则是什么?

  3、单项式乘法的法则是如何推导出来的,用到哪些知识?

  4、单项式乘法的法则内容是什么?

  5、单项式乘法要注意哪些问题?

  <三>通过自学教材P144~145页内容,和同学们讨论或自主完成下列题目。

  自学检测:

  1、计算下列各题:

  ()()

  5 (3)(-6ay)(a) (4)3bb 6 (1)-3ab3()(4b2 (2)5x3×2x2y 232

  2、填空:

  ()()

  (3)(-3xy)(x)(y)=34322 (1)ax×ax (2)()x2y2x5y3

  22321-3ab?4 (4)-6ab abc (5)22()(a3b2)5= (6)15xny2xn-1yn-1=

  <四>通过学生做题反应的情况,酌情讲解教材上的例题。

  <五>引导学生自主探究、归纳出单项式与单项式相乘的法则:

  单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

  <六>依据单项式与单项式相乘的法则,所有学生自主单独完成下列题目。

  当堂检测:

  1、下面的计算对不对?如果不对,应怎样改正?

  (1)3a4a

  2(3)3m237a5 (2)2x33x45x12 (5m2=-15m2 )

  2、填空:

  (1)2x5x52 (2)2ab?a22

  332235(3)xyxyz516

  3、计算下列各题:

  (1)4xy2223 (4)3xy?4xyx()()2 3332133x2yz3 (2)ab2abc 783

  2(3)3.2mn(12220.125m2n3 (4)-xyzxy32)33-yz 5

  <七>针对部分成绩中等偏上的学生,自主完成下列题目,中等及中等偏下的学生可以通过讨论共同完成。

  应用提高:

  1、已知:x=4,y=-

  2、若2a=3,2b=,5,2c=30,试用a、b表示c

  3、已知:3?279mm11215,求代数式xy214(xy)x的值 87436,求m

  <八>课时小结:

  (1)本节课你都有哪些收获?

  (2)这节课你学到了哪些知识?

  (3)在计算的过程中应注意哪些问题?

  <九>思考:

  简单的两个常数的乘法运算,与我们这节课所学的内容单项式与单项式相乘相类似;乘法的运算我们还学习过乘法有分配律,那有没有也与之相类似的呢?例如说单项式与多项式相乘,多项式与多项式相乘呢?如果有,是怎么运算的呢?

  <十>作业:

  1、教材:P99 1

  2、练习册:南方新课堂55—56页

  3、预习:教材 P99-100内容。完成一讲四练9—10页

  教学反思:

  这节课最为欣赏的是通过类比的方法学生自主的掌握单项式乘法法则,不足的是步子较慢,没有完成预设的内容。 这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,有乘方的要先算乘方,后算乘法,积的乘方应注意复习巩固。从学生课堂表现与作业完成情况看,效果还不错,学生整体对法则的掌握较好,但在处理一些涉及符号以及乘除与加减同时出现的一些问题时,出现的错误较多,另外合并同类项与幂的运算法则在运用中也出现混淆的现象。

  在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。三、混合运算中符号及各种运算法则混淆不清,运用还不够熟练。

  对这些问题的解决除了加强基本法则运用之外,还应对于综合题目多加练习,以达到巩固提高的目的。

  篇四:整式的乘法教学反思

  《整式的乘法》是八年级上学期的最后一部分内容,也是比较有难度的内容。主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。整式乘法是整式乘除与因式分解的基础,是学好最后一章的关键,因此是我教学的重点内容。而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。 在这一部分教学时,我主要采用归纳式教学法。首先,举一些简单的例子,然后让学生

  2323总结归纳其中的规律,最后形成有关的乘法运算法则。例如:a×a=a,a×a×a=a,a×a=5a×a×a×a×a=a···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。

  2353教学时发现学生很容易把一些运算的法则搞混淆。例如:进行以下计算(a)=a,a412×a=a,这就是混淆了运算的法则。出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。数学是个严谨的'学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。所以,我认为数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。对于发现的问题,应及时解决,趁热打铁。

  数学是个连贯的体系,前面学习的好坏会直接影响以后的学习。很多同学学会了有关幂的运算,但是在作单项式成单项式和单项式乘多项式时,还是出现了很多问题。主要问题在正负号的变换,乘完后没有合并同类项,或者说是不会合并同类项。这两块内容都属于七年级学习的,可以想象当时的学习情况。基础没有打好,就会给现在的学习带来不便,也增加了老师的工作量。很多老师会根据自己的主观判断来判断学生,对一些自己认为简单的问题,想着学生会很容易的学会并掌握,然而事实并非这样。很多接受慢的同学并没有学会,而老师却不知道,这样这些学生的问题会越积越多,最后导致跟不上所学的课程。

  所以我认为老师不仅要讲的好,更要能利用有效的方法去检测学生的掌握情况,这样才能步步为营。

  问题要时时提醒。学生出现的问题,我们常常当时提醒后就不管了,认为学生应该记住了。但我们忽视了他们还只是十几岁的孩子,怎么可能今天一说明天就改了呢。所以,老师要不厌其烦的说,时刻提醒,让学生一点一点的记住。

  精讲多练促进学习。精讲要求教师有选择的选取例题,例题要有适中的难度,针对某些易错的问题,要多举例子进行辨析解答。老师讲完后一定要让学生进行适当的练习,通过练习看学生的掌握情况和问题所在。出现的问题要当堂解决。

  整式乘法公式许多人会背但不会用,或者是漏掉其中的某些项。例如:有的同学会这样

  222运算(x+y)=x+y。不会使用具体表现在,不能把一些式子进行简单的变形,转化成满足公式的形式。没有整体的思想,不能把一个多项式作为一个整体去运算。

  篇五:整式的乘法 教学反思

  

  这部分内容是在学习了有理数的四则混合运算、幂的运算性质、合并同类项、去括号、整式的加减等内容的基础上进行的,它是前面知识的延伸,这一部分具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。 整式的乘法这一部分内容主要分成三部分内容。

  第一部分是单项式乘单项式,这一部分内容主要是要注意运算的法则依据是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

  第二部分是单项式乘多项式,这一部分内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

  第三部分内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

  在整个这一部分的内容教学中,难点与易错点主要是:一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。三、注意实际问题主要是图形的面积问题的正确解决。

  

  1、关注对教学难点的教学。

  新课程标准下,数学教育的根本任务是发展学生的思维,教材中的难点往往是数学思维迅速丰富、过程大步跳跃的地方,所以在本节课难点教学中既注意了化难为易的效果,又注意了化难为易的过程,在探究法则的过程中设置循序渐进的问题,不断启迪学生思考,发展学生的思维能力,在应用法则的过程中,又引导学生进行解题后的反思,这些将促使学生知识水平和能力水平同时提高。

  2、关注对学生学习方法的指导。

  建构主义学习理论认为,学生的学习是对知识主动建构的过程,同时学生要主动构建对外部信息的解释交流,所以在教学中注重营造学生自主参与、师生互动合作、探究创新为主线的教学模式,从学生已有的知识结构入手,逐渐发现和提出新问题,在解决问题的过程中学会思考,在探究中掌握知识。

  3、教育的根本目的在于促进每一个学生的发展,这也是数学教育的根本目的,因此教师

  在教学设计时,结合学生实际,有效整合教材,精选例习题,分层施教。本单元教学是以习题训练为主的,教学时注意选择了有层次的例题和练习,采用“兵教兵”的方法,组织学生开展合作学习。在探究问题的设计上也是由浅入深,目的就在于通过引导学生对问题的解决,能熟练掌握基础知识,灵活运用基本方法,提高分析问题和解决问题的能力。

  4、让学生在“做”中学。

  依据教学内容及教学要求,本节课通过拼图游戏,让学生动手操作,在活

  动中既复习了单项式与多项式相乘,又引出多项式相乘的运算。由于所拼图形的面积会有不同的表示方式,通过对比这些表示方式可以使学生用几 何方法对多项式乘法法则有一个直观认识,再由几何解释的基础上从代数运算的角度将多项式与多项式相乘转化为单项式与多项式相乘,整个过程中学生在教师指导下经历操作、探究、解决问题的过程,引导学生在问题探究中不断质疑和释疑,体现了以探究为出发,以活动为中心,注重让学生从做中学的教学思路。

  5、加强反思,注重对学生数学思想方法的渗透。

  美国认知心理学家加涅指出,学习者学会了如何学习、如何记忆、如何获得更多的学习思维和分析思维,将会使它们变得越来越自主学习。所以,在教学中非常注重引导学生进行反思,在探究问题的过程中引导学生思考运用了哪些数学思想,例如本课中将多项式乘法转化为单项式乘以多项式的“转化”的思想,运用乘法分配律时的“整体”思想,拼图列式中运用的“数形结合”思想等,可以帮助学生从本质上理解所学知识,并提高解决问题的能力,真正使教学过程起到“授之以渔”的作用。

  

  本部分的内容是在已经学习了有理数的四则混合运算、幂的概念、字母表示数、合并同类项、去括号、整式的加减等内容的基础上进行的,是前面知识的延伸,这是承前,本章具有承前启后的作用,启后是它是学习整式的除法、分式的运算、函数、二次方程的解法学习的基础。 整式的乘法这一块内容主要分成三块内容。

  第一块是单项式乘单项式,这一块内容主要是要注意运算的法则依据

  是乘法的交换律,分成三步计算:一是各个单项式的系数相乘,二是同底数幂相乘,三是单独的字母照抄。这部分的计算中往往会混合了积的乘方,要注意运算的顺序,积的乘方应注意复习巩固。

  第二块是单项式乘多项式,这一块内容的依据是乘法分配律,要注意有乘方运算时的运算顺序以及符号的确定。

  第三块内容是多项式乘多项式,注意带符号运算以及不要漏乘。在混合运算中注意括号运算,不要漏括号。

  在整个这一块的内容教学中,难点与易错点主要是:

  一、符号不能正确的判断,其中主要是没有注意带符号运算或者没有注意整体思想,漏掉括号或者去括号错误。

  二、同时注意整体思想的渗透,作为整体的相反数的的变形,根据指数的奇偶性来判断符号。

  三、注意实际问题主要是图形的面积问题的正确解决。

7、《整式的加减》数学教学反思

  对于《整式的加减》教材中首先是在学习有理数的基础上,结合学生已有的生活经验,引入用字母表示数。了解代数式、代数式的值、整式、单项式与多项式及其相关概念,并在这些概念的基础上逐步展开同类项的概念、合并同类项的法则以及去括号与添括号的法则,最后将这些法则应用于本章的重点——整式的加减,全章知识体系井然有序,层层深入。

  学生在学习上有一定的困难,如在讲用字母表示数的时候,学生的抽象理解能力还不是很强,突破这一认识,需要一定时间,我在讲这节课的时候利用了“物以类聚”这一生活常识。例如:a>0,它的'数学含义就是用字母a,>,0这三个数学符号的组合表示大于0的数,也就是正数。对于其它一些概念的理解具体的安排如下:

  (一)同类项:

  通过生活中通俗易懂的表示方法,如□+□+□=3□,让学生模仿例子做练习,然后推出同类项的定义。课前练习要有模仿性及代表性,能让学生易于观察推出结论。因为在学生的认知结构中“同类的东西”是容易理解的,所以这节课的目标是学会辨认同类项就不难了。

  (二)合并同类项:

  先讲系数这个概念,既避免了与单项式的次数一起讲所带来的易混淆性,又是合并同类项所必须掌握的基石。然后,重点是掌握合并同类项的法则。

  (三)去括号:

  运用乘法分配律引入及进行去括号的运算。

  (四)整式的加减:

  可用两个课时把重点知识巩固好。

  通过实践,我对教材的整合中,使学生轻松的认识、理解、掌握知识,突出了重点,加强了练习,让学生构建自己的知识体系、完善知识结构,形成能力。

8、初一数学《整式的加减》教学反思

  我选择合并同类项作为我的入门公开课的原因,一方面是刚好顺着课时安排,另一方面是这一课的知识点相对容易讲,拿来上公开课的的话学生容易听懂,那么课堂气氛相对会好。

  结合七(4)班的实际情况,我这一堂课的主要教学目的是:1.理解同类项的概念2.理解合并同类项的概念,初步掌握合并同类项的法则。除此之外,我希望这一节课能够让学生来主导课程,让学生多问多讲。那么,我这一节课的目的达到了吗?

  先说一下我讲了那些吧!从一开始的复习回顾,到研读课文的探究,我是带着他们一起进行学习。这部分内容是由我来问,学生答的形式。学生都可以配合着我回答出问题,基本上我是成为答案的“书写者”。这堂课有一个重头戏,那就是待我讲完了课本63页合并同类项以及64页例1(1)后,轮到学生上来做剩下的题目。

  一开始我担心孩子们不会举手上来解题,因为这是公开课,他们本来就害羞,面对这么多老师会举手吗?结果证明我的担心是多余的。同学踊跃地举手让我感觉我平时的鼓励与支持是奏效了。

  我在班里是实行小组加分制,全班一共分为8小组,每个组都有两个小组长。分组的目的除了让他们形成一种竞争意识,同时也是为了锻炼孩子们的表达能力。有时候我会让每个小组派代表上来当小老师,给同学们讲解题目,我在一旁做适当的解说。从这一节课的例题解答到随堂练习再到最后的强化训练,孩子们在课堂上思考,然后主动回答问题,这就印证了我这个措施是有效的。他们给了我正向的回应。

  总的来说,从我对学生的课堂表现的'期待出发,我的目的是达到了。但是从课堂内容来讲,还存在着很多需要改进的地方。综合科组评课时,各位老师给出的意见,我自己总结出了我在讲课时急需改进的地方。

  首先,就是板书需要更加的详细明确。合并同类项是整式部分的重点内容,这个知识点几乎都是考计算题,然后计算题必须要格式正确,过程要详细。然而我却犯了一个一直以来都存在的错误,那就是板书不够严谨。这样可能会给学生对只是的理解带来困惑,降低了他们的学习能力。

  再次,就是需要向学生重点强调合并同类项的方法,特别是需要在做练习题的时候强调解题过程,加深学生对本堂课的知识点理解与掌握。我想我是过于相信学生的能力而忽略了这一点。能够在黑板做出来题目的同学并不能代表其他同学可以做出来,知识点是需要重复强调才能让学生们记住。

  以上内容是我从这堂公开课中的收获,有喜悦的地方,也有让自己担忧的地方。希望自己能够吸取经验,获得更大的进步。

9、初一数学《整式的加减》教学反思

  本章的主要内容是整式的加减运算,还包括单项式、多项式、整式的概念,以及合并同类项、去括号、整式的加减及其应用等内容。

  1、注意与小学相关内容的衔接

  新教材是围绕数学在生活中的应用展开的,而用整式表示数量关系是建立在用字母表示数的基础之上。虽然学生在小学阶段已经学过用字母表示数、简单的列式表示实际问题中的数量关系和简易方程等内容,但是在学习的初期阶段,学生对用字母表示数还是比较陌生的。因此,在本章的学习中要充分注意与小学内容的衔接。在课堂引入中多以让学生体会由数到式的过程,充分感受用字母表示数的意义。

  教师应该注意的是:复习用字母表示数,不是对旧知识简单的重复,而是在复习的基础上有所提高,让学生充分体会字母的方便,字母的真正含义。在复习中让学生逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为后续的学习打下坚实的基础。

  2、加强与生活的联系

  新课标的理念就是:数学源于生活,在学习过程中要运用所学知识解决实际问题。

  本章的概念引出、运算法则的探讨,都是紧密结合实际问题展开的。

  让学生深切感受到数学知识是研究、解决实际问题的重要工具。通过解决实际问题,感受由实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。

  另外,通过本章的学习,分析实际问题中的数量关系,会用整式表示,为下一章学习一元一次方程的解法、列方程解应用题做必要的知识准备。

  3、教学中加强知识的内在联系,重视数学思想、数学方法的渗透

  整式可以简洁地表明实际问题中的数量关系,比具体地数字更有一般性。整式中的字母表示数,使得整式的运算与数的运算具有一致性。整式的计算是建立在数的运算基础之上的,式的运算更具有一般性,数的运算是式的运算的特殊情况。在探求整式加减运算的法则和规律时可以类比数的运算规律。

  例如:在学习合并同类项法则时,可以先让学生运算47×2+53×2和47×(-2)+53×(-2)。

  在运算的过程中,让学生重点思考进行运算的依据。然后引导学生探讨关系式47t+53t的运算。强调通过类比的思想方法学习式的运算,体会“数式通性”。

  通过对数与式运算的分析,使学生理解认识事物的过程是由特殊到一般,又由一般到特殊,在不断重复中提高数学能力。

  4、对课堂中让学生分层练习,使学生全面提高

  在义务教育阶段,学生由于各种原因造成基础不同,接受能力等差异较大。“高效课堂”即课堂上精讲、分层练习的教学模式,是一种较适合的教学模式。由于受课堂时间的限制,分层练习的题目要考虑以下几个因素:

  (1)对所教的学生有一个总体评估,确定不同层次题目的数量和难度;

  (2)在学生练习过程中,教师要迅速收集信息,了解每个知识点学生掌握的大致情况;

  (3)在学生练习的过程中,及时对A层的学生进行个别辅导;

  (4)在课堂练习点评时,讲评要有针对性。尽可能讲评大部分学生不会的知识,极少数学生不懂的问题,教师可在课堂中迅速给出答案,或稍做点拨即可。

  5、引导学生养成预习的习惯

  高效课堂的教学模式是精讲、分层练习。在有限的时间内让学生对新知识消化,吸收还是有难度的。因此,引导学生利用课余时间对新课进行预习是十分必要的。学生通过预习,带着问题去听课,对新知识的接受相对容易很多。我校经过一段时间的对比试验,预习的效果明显。

  6、加强探究性学习

  引导学生养成学习的主动性与探究性,促进学生学习方式的转变,是课程改革的目的之一。本章的许多实际问题情境可以激发学生学习数学的兴趣。如果对教材中的数学活动内容充分挖掘,有关问题的拓展与加深,不仅可以开阔学生的眼界,还可以增长学生的知识。因此,适当开展一些数学活动课程,既与必学内容相得益彰,又可以提高学生的数学水平。

  整式的加减运算还是下一章学习一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程、以及分式、函数等的重要基础。进行整式的加减就是整式的化简,化简的主要方法是合并多项式中的同类项和去括号。对于合并同类项和去括号等重点,教学中可以适当加强练习,使学生熟练掌握整式的加减运算法则,为今后的学习打下基础。

10、初一数学《整式的加减》教学反思

  1、本节教学过程中,教师能够充分发挥学生的主观能性,调动学习积极性,提高学习兴趣。

  2、整节课时间紧凑,步骤清晰,有条理;针对个别学生辅导到位。

  3、《整式的加减》整式的加减是承有理数的加减、乘、除、乘方的运算,续整式方程的一系列运算,是学生从小进入初中含有字母运算的变化,认知上有新的突破。注意与小学相关内容的衔接,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的数量关系和简单方程。这些知识是学习本章的直接基础。因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。

  4、在解决实际问题时,注意加强与实际的联系,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学业生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。

  不足之处表现在:

  1、学生已经学习了有理数的运算,能够灵活运用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。

  2、抓住重点,加强练习,打好基础。整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。

  3、加大探索空间,发展思想能力

  培养学生的探究能力和创新精神,力求使得教学结论的获得是通过学生思考,探究等活动而归纳得出,培养学生初步,辩证唯物主义观点,充分相信学生,尽可能为学业生留出探索空间,发挥学生学习的主动性和积极性,培养学生的创新精神和自学意识。

11、初一数学《整式的加减》教学反思

  一、注意与小学相关内容的衔接

  整式及其相关概念和整式的加减运算,与列代数式表示数量关系密切联系,而同整式表示数量关系是建立在同字母表示数的基础上的,在小学学生已经学过用字母表示数,简单的列式表示实际问题中的数量关系和简单方程。这些知识是学习本章的直接基础。因此充分注意与这些内容的联系,使学生感受到式子中的字母表示数,让学生充分体会字母的真正含义,逐渐熟悉用式子表示数量关系,理解字母可以像数一样进行计算,为学习整式的加减运算打好基础。

  二、加强与实际的联系

  在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,加强了与实际的联系,无论是概念引出,还是运算法则的探讨,都是紧密结合实际问题展示的,在教学中,一方面要让学生体会整式的概念与整式的加减运算来源于实际,是实际的需要,同时也可以让学生看到整式及其加减运算在解决实际问题中所起的作用,感受从实际问题抽象出数学问题的过程,体会整式比数学更具一般性的道理。

  三、类比数学习式,加强知识的内在联系,重视教学思想方法的渗透

  整式可以简洁地表明实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,关于整式的运算与数的运算具有一致性,数的运算是式的运算的特殊情况,由于学生已经学习了有理数的运算,能够灵活运用有理数的运算法则和运算律进行运算,因此,充分注意数式联系与类比,根据数与式之间的联系,体现数学知识间具体与抽象的内在联系和数学的内在统一性。

  四、抓住重点,加强练习,打好基础

  整式的加减运算,合并用类项和去括号是进行整式加减的基础,整式的加减主要是通过合并同类项把整式化简,准确判断同类项,把握去括号要领,防止学生易出错地方,并进行一定的训练,才能有效的掌握。

相关文章

推荐文章