说课稿

数学五年级数意义和性质一等奖说课稿

2023-09-03 10:03:37

  数学五年级数意义和性质一等奖说课稿

数学五年级数意义和性质一等奖说课稿

1、数学五年级数意义和性质一等奖说课稿

  作为一名教职工,常常需要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。那么写说课稿需要注意哪些问题呢?下面是小编收集整理的数学五年级数意义和性质说课稿范文,希望对大家有所帮助。

  一、说教材

  “分数的意义”是义务教育课程标准实验教科书五年级下册第四单元的内容,通过学习使学生从感性认识上升到理性认识,理解单位“1”,概括出分数的意义。它是学生系统学习分数的开始,学好这部分内容,将会对后续建构真分数、假分数等概念以及学习分数基本性质、分数四则运算、分数应用题等内容奠定基础。

  二、说教学目标

  根据教材的特点和学生的认知规律及教学设计,制定本课教学目标:

  1、引导学生经历探究分数意义的过程,掌握分数的意义,并理解单位“1”的.含义。

  2、使学生知道分子、分母、分数单位表示的意义。

  3、培养学生的观察能力,动手能力和抽象概括能力。

  三、说教学重难点

  根据教材和课标的要求以及学生的实际情况确定教学重点是分数意义的归纳与单位“1”的理解。

  根据学生的心理特点与认知思维规律,五年级的学生以形象思维为主,对于理解单位“1”存在困难,所以本节课的教学难点为:把一些物体组成的一个整体看作单位“1”。

  四、说教学设想

  1、教给学生探索知识的方法。为学生提供了一些具有代表性的材料,让学生用这些学具将他们通过分一分、画一画、折一折等方法表示出分数,领悟出单位“1”不仅仅可以是一个物体、还可以是一些物体组成的一个整体。达到感性认识到理性认识的升华。

  2、引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。让学生在在动手操作、比较之后归纳出单位“1”可以是一个物体,也可以是一些物体组成的一个整体。概括出分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。基于本节课的内容,我主要采用活动探究法和集体讨论法进行教学。

  五、说学法

  这节课在指导学生学习方法和培养学生学习能力方面主要采用的动手操作、自主探究,分析归纳等方法。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,突破难点,在各项活动的.安排中,注重互动交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)复习引入

  由学生说分数,分子、分母及写这个分数引出新知识,使学生能够知道新旧知识之间的联系。

  (二)讲授新课

  在讲授新课的过程中,我以动手操作、归纳总结活动为主,选择了多媒体教学手段,在教学中,我还注重了题目的引申,有利于学生对知识的拓展、积累、加工,从而达到举一反三的效果。

  (三)巩固练习

  针对本节课的重难点,我设计了四道习题,通过多样化的习题,使学生进一步理解分数的意义和分子、分母、分数单位的含义。

  (四)课堂小结

  这节课我们学习了什么?通过学习你懂得了什么?

  (五)布置作业

  练习十一4、5题

  (六)板书设计

  板书设计的目的就是展现本节课的重难点,使学生直观的理解并掌握所学内容

2、数学五年级数意义和性质一等奖说课稿

  一、说教材

  《分数的意义》是人教版义务教育课程标准实验教科书五年级下册第四单元第一课时的内容。在此之前,学生已经知道把一个物体、一个图形、平均分成若干份,这样的一份或几份,可以用分数来表示;本节课学习的重点是让学生理解不仅一个物体,一个图形,可用自然数1来表示,许多物体等看作的一个整体,也可用自然数1来表示,通常把它叫做单位“1”,进而总结概括出分数的意义,认识分数单位,为进一步探索分数的基本性质,学习分数四则运算以及运用分数知识解决实际问题奠定了基础。

  二、说教学目标

  根据对教材内容的分析,考虑到五年级学生已有的认知水平和生活经验,结合数学学科的特点以及数学课程标准的要求,我制定了如下的教学目标:

  知识与技能:建立单位“1”的概念,理解分数的意义,认识分数单位。

  过程与方法:通过主动学习、探究,理解并形成分数的概念,在动手实践中培养学生的创新精神和实践能力。

  情感态度价值观:通过同学间的合作交流,促进学生的倾听、质疑等良好学习习惯的养成。

  根据数学课程标准与教材,结合学生的基础,我确立了本节课的教学重、难点:

  教学重点:掌握分数的意义

  教学难点:对单位“1”的理解及分数的意义

  三、说教法和学法

  学生认识事物是由易到难,由浅入深循序渐进。学生虽然在前面的学习中对分数有了初步认识,但要使学生理解单位“1”的含义,进一步明确分数意义,必须遵循学生的认知规律。因此,本节课我采用自主探索,合作交流的教学方法,先来回顾旧知。

  在集体交流中,抽象出单位“1”的含义以及概括出分数的意义,进而认识分数的单位,为学生创设一个宽松的学习环境,使得他们能够积极自主地,充满自信的学习数学。在课堂教学中,给学生充分的时间和空间,让学生自主探究,合作交流,通过动手画一画,写一写,选一选,涂一涂抽象概括出分数的意义,激发学生学习的积极性。引导学生学会分析、归纳、概括、迁移、抽象、把握概念的本质。

  四、教学过程

  为完成本节课的教学目标,我在自己的教学过程中努力构建和谐的课堂,主要通过以下几个方面入手来组织教学的。

  第一个环节,情境导入,理解单位“1”,感悟分数意义。

  教学中,一开始,由故事引入“平均分”“分数”两个概念,提出“生活中这样的分数有许多,书上也有这样的例子。然后让学生自学课本说清分数的产生。

  接下来,让学生用学具在折、画表示一个分数的实际操作中回忆、复习已有的知识,让每个学生多种方法创造分数。让学生上台展示成果,体现了“做数学”的过程。同时,学生在相互倾听、相互补充的过程中,能够不断丰富自己对分数的直观感受。

  然后老师反问学生,究竟什么是分数呢,学生再次自学课本,充分利用教材,培养学生的自学能力,把学习的主动权交给学生,然后小组交流,看懂了什么,还有什么不懂的地方,让学生在自学、讨论、交流的过程中实现对知识的意义建构,再次体现“做数学”的活动,体现学生主体地位,使每个学生尽可能的参与学习的全过程。教师只是引导学生抓住重点内容,先得出一个完整的“分数的意义”的概念,然后针对某些疑点、难点展开研究,逐步建立完整清晰的概念,培养学生探索精神和有序思维能力。

  第二个环节,认识分数单位,加深分数意义。

  这个环节是让学生在感受分数单位的特点后,先总结再自学课本,从而掌握分数单位。

  第三个环节:生活应用,巩固分数意义。

  练习设计力求做到由易到难、由浅入深,既巩固新知,又发展思维,体现了层次性、针对性、实效性。如:达标练习中的“用分数表示涂色部分”,而且也注意到了练习的梯度,培养学生的发散思维,通过这个练习加深了对单位:“1”的理解,进而内化分数的意义,也为后面学习用分数知识解决实际问题作了准备如:“拓展延伸”这一环节中“选分数涂色”,我的意图是让学生选分数,涂色表示分数,使学生的思维从单个物体的平均分跨越到多个物体的平均分。让不同情况的学生进行展示。

  整个环节,让学生在动手操作、动脑思考、动口说理的过程中全面理解了单位“1”的含义。。本节课设计的这些开放性练习题,可以使学生主动学习的空间得以扩展,给不同层次的同学展示的机会,使他们感受到成功的喜悦,从而增强学生的自信心,以收到良好的教学效果。

  第四个环节的提升,是逆向思维的练习。同样的一个同学可以表示不同的分数,猜测单位“1”是多少,在比较中让学生进一步理解:从而使学生对分数意义的理解水到渠成。

  第五个环节:课堂小结

  学习数学实质上就是“做数学”。老师给学生提供了丰富的学习资料,让学生采用不同形式和方法“做分数”,很自然地使学生体验、感受分数形成的过程。分数意义的探索完全在学生自己实践、合作、思考下获得。学生“学习的主人”色彩体现的淋漓尽致。让学生充分的交流,适时的抽象、归纳、概括、引导、总结,在让学生充分展示自我的同时,教师很恰当地体现了自己指导者在教学过程中的作用。师生之间的互动,使学生深刻的理解和掌握了抽象的分数的意义。体现了“在活动中学习数学”的现代思想。

3、数学五年级数意义和性质一等奖说课稿

  第一课时说课稿

  一、说教材

  “分数的意义”是义务教育课程标准实验教科书五年级下册第四单元的内容,通过学习使学生从感性认识上升到理性认识,理解单位“1”,概括出分数的意义。它是学生系统学习分数的开始,学好这部分内容,将会对后续建构真分数、假分数等概念以及学习分数基本性质、分数四则运算、分数应用题等内容奠定基础。

  二、说教学目标

  根据教材的特点和学生的认知规律及教学设计,制定本课教学目标:

  1、引导学生经历探究分数意义的过程,掌握分数的意义,并理解单位“1”的含义。

  2、使学生知道分子、分母、分数单位表示的意义。

  3、培养学生的观察能力,动手能力和抽象概括能力。

  三、说教学重难点

  根据教材和课标的要求以及学生的实际情况确定教学重点是分数意义的归纳与单位“1”的理解。

  根据学生的心理特点与认知思维规律,五年级的学生以形象思维为主,对于理解单位“1”存在困难,所以本节课的教学难点为:把一些物体组成的一个整体看作单位“1”。

  四、说教学设想

  1、教给学生探索知识的方法。为学生提供了一些具有代表性的'材料,让学生用这些学具将他们通过分一分、画一画、折一折等方法表示出分数,领悟出单位“1”不仅仅可以是一个物体、还可以是一些物体组成的一个整体。达到感性认识到理性认识的升华。

  2、引导学生在获取知识的同时,掌握对事物本质进行归纳总结的方法。让学生在在动手操作、比较之后归纳出单位“1”可以是一个物体,也可以是一些物体组成的一个整体。概括出分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。基于本节课的内容,我主要采用活动探究法和集体讨论法进行教学。

  五、说学法

  这节课在指导学生学习方法和培养学生学习能力方面主要采用的动手操作、自主探究,分析归纳等方法。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,突破难点,在各项活动的安排中,注重互动交流,最大限度的调动学生参与课堂的积极性、主动性。

  (一)复习引入

  由学生说分数,分子、分母及写这个分数引出新知识,使学生能够知道新旧知识之间的联系。

  (二)讲授新课

  在讲授新课的过程中,我以动手操作、归纳总结活动为主,选择了多媒体教学手段,在教学中,我还注重了题目的引申,有利于学生对知识的拓展、积累、加工,从而达到举一反三的效果。

  (三)巩固练习

  针对本节课的重难点,我设计了四道习题,通过多样化的习题,使学生进一步理解分数的意义和分子、分母、分数单位的含义。

  (四)课堂小结

  这节课我们学习了什么?通过学习你懂得了什么?

  (五)布置作业

  练习十一4、5题

  (六)板书设计

  板书设计的目的就是展现本节课的重难点,使学生直观的理解并掌握所学内容。

4、数学五年级《分数的意义和性质》教学设计一等奖

  学习内容:

  课本第94页例4及“做一做”,练习十三1、2、3题。

  学习目标:

  1.我能掌握同分母分数,同分子分数大小比较的方法,并能熟练、快速地比较。

  2.我能理解和掌握通分的概念,掌握通分的方法,能正确把分数进行通分。

  3.我能运用通分的方法,比较异分母分数的大小。

  学习重难点:

  我能理解通分的意义,掌握通分的方法。

  学习过程:

  一、导入新课

  二、检查独学、合作探究

  1.解决独学中的`疑难问题。

  2.小组合作讨论:怎样通分?讨论提示:用什么作公分母?怎样把一个异分母分数化成和原来相等的同分母分数?

  我的想法:________________________________________

  3.小组代表展示、汇报

  4.总结升华

  把________________分数分别化成和原来分数________的________分数,叫做通分。

  5.我能行:完成课本94页“做一做”。

5、六年级数学《比的意义和性质》教案一等奖

  教学目标

  1、加深认识比的意义和基本性质,能说出一个比的具体含义,能比较熟练的应用比的基本性质。

  2、进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

  教学重难点

  进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 揭示课题

  二、基本题练习

  三、综合练习

  四、课堂小结

  五、作业

  前两年级课我们学习了什么内容?

  这节课,我们来练习比的意义和基本性质。

  1、提问:比的意义是什么?比与除数、分数有什么联系?

  2、提问:根据比与除法的关系和比值的意义,怎样求比值?

  3、提问:比的基本性质是什么?比的基本性质有什么用途?

  4、做练习十二题12

  5、问:求比值和化简比的依据是什么?有什么区别?

  1、做练习十二第13题

  问:盐水是怎样配制的?盐水的'重量是多少克?

  在配制的盐水里盐的重量占几份,水的重量占几份?盐水的重量可以看成几份?

  2、做练习十二第15题

  问:哪几题的结果是相同的?为什么会相同?

  3、口答题(见课件)

  这节课练习了什么内容?通过练习你们进一步了解了哪些知识?

  做练习十二第14、16题

  课后感受

  同学们能比较熟练的应用比的基本性质。

6、小学六年级数学比例的意义和基本性质教案一等奖设计

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的`两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶66∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:805=400

  内项积是:2200=400

  805=2200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上和基本性质,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )( )=( )( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据34=26写出比例.

7、公五年级数学《约数和倍数的意义》教学设计一等奖

  教材分析

  约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

  教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

  学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

  教法建议

  约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

  复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

  约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的'找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

  教学设计示例

  约数和倍数的意义

  教学目标

  1、掌握整除、约数、倍数的概念.

  2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

  教学重点

  1、建立整除、约数、倍数的概念.

  2、理解约数、倍数相互依存的关系.

  3、应用概念正确作出判断.

  教学难点

  理解约数、倍数相互依存的关系.

  教学步骤

  一、铺垫孕伏(课件演示:数的整除 下载)

  1、口算

  6÷5 15÷3 23÷7

  1.2÷0.3 24÷2 31÷3

  2、观察算式和结果并将算式分类.

  除尽

  除不尽

  6÷5=1.2 15÷3=15

  1.2÷0.3=4 24÷2=12

  23÷7=3……2

  31÷3=10……1

  3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

  4、寻找具有整除关系的算式.

  板书:15÷3=515能被3整除

  5、分类除尽

  除不尽

  不能整除

  整除

  6÷5=1.2

  1.2÷0.3=4

  15÷3=15

  24÷2=12

  23÷7=3......2

  31÷3=10......1

  二、探究新知

  (一)进一步理解”整除“的意义.

  1、整除所需的条件.

  (1)分析:24能被2整除,15能被3整除;

  23不能被7整除,31不能被3整除;(商有余数)

  6不能被5整除;(商是小数)

  1.2不能被0.3整除;(被除数和除数都是小数)

  (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

  a、被除数和除数(0除外)都是整数;

  b、商是整数;

  c、商后没有余数.

  板书:整数整数整数(没有余数)

  15÷3=5

  2、用字母表示相除的两个数,理解整除的意义.

  (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

  (板书:a÷b)

  学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

  (板书:a能被b整除)

  (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

  学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

  3、反馈练习.

  (1)下面的数,哪一组的第一个数能被第二个数整除?

  29和336和121.2和0.4

  (2)判断下面的说法是否正确,并说明理由.

  a.36能被12整除.()

  b.19能被3整除.()

  c.3.2能被0.4整除.()

  d.0能被5整除.()

  e.29能整除29.()

  4、”整除“与”除尽“的联系和区别.

  讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

8、五年级数学《小数的意义和读写方法》教学设计一等奖

  作为一名无私奉献的老师,往往需要进行教学设计编写工作,借助教学设计可以让教学工作更加有效地进行。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编收集整理的五年级数学《小数的意义和读写方法》教学设计,仅供参考,欢迎大家阅读。

  教学内容:

  苏教版P28页例题1、例题2和相关练习

  教材简析:

  这部分内容是在学生对一位小数和分数有了初步认识的基础上进行学习的,是学生系统学习小数知识的开始,同时又是学习小数四则运算的基础。教材结合现实数量揭示小数和分数的联系,引导学生逐步加深对小数意义的认识。小数的意义是进一步教学小数性质、比较小数大小的规则、小数点移动引起小数大小变化的规律、名数改写的方法的基础。

  教学目标:

  1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。

  2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

  教学重点:

  小数的意义及小数读写方法。

  教学难点:

  小数的意义及与分数的关系。

  一、新课引入

  1、老师昨天在超市看到了这两个数:0.1元、0.3元你能说说这是什么数吗?(一位小数)它有什么意义?(0.1元就是1角;把1元平均分成10份,其中一份就是0.1元,0.1元就是1/10元)那么0.3元就是3/10元,我们利用以前学的知识很容易就解决了老师这个问题。

  2、瞧!这位学生在超市,遇到什么麻烦事了?(出示购物场景)原来她不知掉本子和信封该付多少钱。

  3、引入课题

  看来小数在我们生活中还真无处不在,今天就进一步来认识小数。

  (出示课题:小数的意义和读写方法)

  二、新课学习

  教学例1

  1、出示例1:我们来看看这位学生买的`东西(课件出示)

  你能用“角”或“分”作单位,说出下面物品的价钱。

  请小组同学交流一下,我们来看一下,你说的对吗?

  橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习本的单价0.48元是4角8分或48分。

  2、初步感受两位小数。

  我们知道1元=100分,那么1分是一元的1/100,也就是1/100元可以写成小数0.01元

  5分呢?

  5分是一元的5/100,就是5/100元写成小数就是0.05元。

  4角8分就是48分可以写成多少元呢?

  请大家快速的思考。谁来说一说?

  3、教学小数的读法:

  这几个小数你会读吗?鼓励学生大胆尝试。

  0.01、0.05、0.48,请学生读,0.01 读作:零点零一 0.05 读作: 零点零五 0.48 读作:零点四八

  (强调:小数部分依次直接读出数字就可以了)

  这几个都是两位小数

  4、随堂练习

  教学例2

  除了在超市有小数,生活中还有很多用到小数的地方

  1、出示例题图

  师:1厘米是1米的( ) 可以写成小数是?(0.01米)这是1米米尺的一部分,把一米平均分成100份,每份长是1厘米

  2、那4厘米和9厘米写成分数和小数各是多少呢?

  请你们思考一下填在课本上,哪位学生愿意来说一说?(学生汇报,并说明理由)

  师:你能再说一个例子吗?同桌之间互相说一说。

  通过刚才的改写我们发现百分之几的分数可以写成几位小数?(两位小数)

  思考:如果把一米的米尺平均分成1000份,每份长多少呢?(1毫米)

  1毫米是1米的几分之几?(1/1000)可以写成小数是?(0.001)

  试着想一想,如果把7毫米、15毫米用分数和小数表示又是多少呢?

  请迅速填在课本上。(学生完成后汇报)

  我们发现千分之几的分数可以写成几位小数?(三位)

  3、小结、揭示小数的意义:

  课件出示几组分数和小数,通过刚才我们认识的这些数比较你能发现什么?

  生:十分之几、百分之几、千分之几的分数都可以写成小数

  师:反过来观察一下,发现一位小数表示十分之几的数,两位小数表示百分之几的数,三位小数表示千分之几的数

  师:如果是四位小数表示多少的数?(万分之几的数)对说明还有很多种情况。

  同时课件出示:分母是10、100、1000……的分数都可以用小数表示。(……表示什么?对当然也包括分母是10000、100000等的数)

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  你明白了吗?那老师可要考考大家了。

  三、拓展提高:

  1、出示29页试一试第一题

  2、出示练一练2

  3、出示练一练3

  学生自主完成,汇报结果。

  四、小结

  想一想,你今天有哪些收获?和大家说说!

9、分数的基本性质五年级数学教案一等奖

  教学目标

  1、进一步理解分数基本性质的意义,掌握约分的方法。

  2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。

  教学重难点约成最简分数

  教学准备:分数卡片口算卡片

  教学过程

  一、自主回顾

  回顾一下对约分的理解情况

  突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。

  师:什么是最简分数?

  说一说。

  二、巩固练习

  师分数卡片判断

  1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)

  你是怎样寻到的?说说自己的理由好么?

  2、能用不同的分数表示下面各题的商吗?

  练习十一第8题

  师:我们在刚刚学习分数和除法的`关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。

  师:你能写出不同的除法算式吗?

  =()÷()=()÷()

  你能说出几个除法的算式?

  这些算式之间有什么联系?

  3、快乐学习超市

  超市画面快乐套餐1快乐套餐2

  快乐套餐1:比一比○○0.4

  计算并化简+=-=

  在()填上最简分数20分=()时

  快乐套餐2、3同上。

  (分组练习小组代表汇报整合了练习十一10至14题)

  4、集中练习

  把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?

  分母是10的最简分数有几个?

  请你为大家提出一个类似的问题。

  课堂作业

  练习十一第9题,12、13、14题各自选2个

  课后练习:完成练习册上的相应练习。

10、五年级数学分数的基本性质教学设计一等奖

  教学目标

  知识目标 经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。

  能力目标 培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。

  情感目标 让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。

  教学重点 探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点 自主探究、归纳概括分数的基本性质。

  教学过程 教学预设 个 性 修 改

  目标导学 复习激趣 目标导学 自主合作 汇报交流 变式训练

  创境激疑

  一、创设情境,提出问题

  1、听录音故事:有一位老爷爷把一块长方形地分给四个儿子。老大分到这 块地的 ,老二分到这块地的 ,老三分到这块地的 ,老四分到这块地的 。 老大、老二、老三觉得很吃亏,于是四人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑起来。给他们讲了几句话,四兄弟就停止了争吵。

  2、思考:阿凡提为什么哈哈大笑?学生拿出课前准备的四张同样大小的长 方形纸片,动手操作,折出、 、 、,观察、比较和验证,得出结论:四兄弟分的地同样多 。板书: = = = 。引导学生把分数化成除法的形式,并算出它们的商,再次验证 = = =。

  3、引导:四兄弟分的地同样多,却以为自己很吃亏,争吵不休,引得阿凡提哈哈大笑。那么,这几个分数的分子与分母不一样,为什么大小都相等呢?阿凡提对四兄弟讲了哪些话,四兄弟就停止了争吵呢?其实,这里包含了一个数学知识,下面我们就来研究这个问题。

  合作探究

  二、自主探究,发现规律

  1、学生从 中任意选择两个分数比较一下,看看它们的分子与分母是怎样变化的,分数的大小不变?学生自由选择分数比较,思考分数分子与分母的'变化情况。

  2、组织引导学生交流所选择的两个分数以及它们分子与分母的变化情况。(注意引导出分子与分母同时乘同一个数和分子与分母同时除以同一个数两种情况。)

  3、引导学生把交流的等式分成两类,并说出依据。学生思考分类,然后提问,师相机分分子与分母同时乘同一个数和分子与分母同时除以同一个数两类板书等式。

  4、引导学生观察板书的两类等式,

  思考:从这些分数分子、分母的变化中,你发现了什么?提问学生,说说自己的发现,初步概括结论:一个分数的分子、分母同时乘或除以一个相同的数,分数的大小不变。

  ①学生举例,教师引导学生操作验证,或计算验证。②思考:是否分数的分子、分母同时乘或除以任何一个相同的数,分数的大小都不变呢?启发学生得出:0除外。引导学生想一想:为什么?③引导学生再次归纳,概括结论:一个分数的分子、分母同时乘或除以一个相同的数,分数的大小不变。

  教学过程 教学预设 个 性 修 改

  合作探究

  三、(课件出示)例2、把 和 化成分母是12而大小不变的分数。

  学生独立完成。

  拓展应用 我们班 的同学参加了舞蹈小组,的同学参加了书法小组, 哪个小组的人数多?

  总 结 1、这节课我们学了哪些知识?分数的基本性质是怎样的? 2、我们是怎样学到这些知识的?你在学习中的表现如何?

  作业布置 59页8、9题

  板书设计

相关文章

推荐文章