初中数学教师观摩课《从问题到方程》一等奖说课稿
1、初中数学教师观摩课《从问题到方程》一等奖说课稿
作为一位兢兢业业的人民教师,常常需要准备说课稿,说课稿可以帮助我们提高教学效果。优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的初中数学教师观摩课《从问题到方程》说课稿,希望对大家有所帮助。
一、本课数学内容的本质、地位、作用分析:
《从问题到方程》是苏科版数学教材七年级上册第四章第一节的内容。
方程是中学数学的重要内容,方程思想也是中学数学的重要思想之一。这节课设计的主要意图是想让学生意识到方程的出现是源于解决实际问题的需要,是刻画现实世界的有效的数学模型,为后面解一元一次方程以及用一元一次方程解决实际问题作铺垫,是后续学习的基础。从数学学科本身来看,方程是代数学的核心内容;从数学教学来看,它对于培养学生运用数学解决实际问题的应用意识、提高解决实际问题的能力和体现数学的应用价值都具有重要的作用和意义。
二、教学目标分析:
1、知识与能力目标:
①探索实际问题中的相等关系,并用方程描述;通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。
②在学生根据问题寻找相等关系并根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。
2、过程与方法目标:
让学生经历将一些实际问题抽象为方程问题的过程。经历运用数学符号和图形描述现实世界的过程。
3、情感态度与价值观目标:
①通过对多种实际问题的分析,培养学生克服困难的意志品质。
②体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
4、教学重点、难点:
重点:
1、理解题意,寻求数量间的相等关系并列出方程。
2、让学生初步感受方程是解决问题的方法。
难点:寻找实际问题中的相等关系。
三、教学问题诊断:
我设计了以下四个环节来完成教学的。
在(一)“体验问题,感受方程魅力”环节中,我现场用学生的年龄和老师的年龄编题,并设置了两个问题:
问题(1):算老师的年龄,激发了学生的好奇心,借此拉近老师和学生情感上的距离,激发学生学习兴趣。
问题(2):没有立刻解决,而是设置了一个悬念,激发学生的学习热情。引出了本课课题:从问题到方程!
最后通过天平的动画演示让学生感受方程是表达数量之间相等关系的“天平”,让学生对方程有直观的感受。
在(二)“解剖问题,建立方程模型”环节中,我也设计了两个问题:
问题一:排球联赛的题目:
这道题目是以问题串的形式呈现,从最简单的问题入手,不急于告诉学生是用方程来解决问题,而是由易到难,让学生逐步体会方程解法的优越性。
关于学生对问题(3)的解答,我预设了两种情况:
1、如果学生只会用算术方法,就继续让学生思考能否只列一个式子就能把问题解决,再进一步引导学生找出实际问题中的相等关系列出方程。
2、如果有个别学生用方程解法,就因势利导,让他和算术方法比较,感受方程解法在解决这个问题时更简便,体会方程解法的优越。
排球联赛的问题主要是让学生感到用算术方法解决复杂问题时的困难,体会方程解法的优越。
问题二:试一试的题目:
这是一开始上课时设置的疑问,通过对前一个问题的.剖析,让学生尝试用方程来解决刚才设置年龄问题的悬念,体会到用方程方法解决这个问题简单易懂。同时师生共同归纳出用方程解决问题的几个关键步骤,为下面的教学做了铺垫。
在(三)“探究问题,领悟方程内涵”环节中,我设计一道有关气温变化的题目。用白居易的诗句“人间四月芳菲尽,山寺桃花始盛开”引出,让学生感受生活中处处有数学,数学离不开生活。我的预设如下:
1、这题由学生独立完成。学生在分析问题、寻找相等关系时,可能思路不同,得出的相等关系不同,从而所列方程也不同。只要是正确的,我都会加以鼓励,让学生都能体验成功的喜悦。
2、这里有一个难点就是如何理解“海拔每升高100m,气温下降0.60度”。我利用动画演示当海拔升高100米、升高200米、…升高xm时气温下降高度的变化,从而分化难点。
3、师生通过引导学生归纳总结从问题到方程的一般步骤,培养学生归纳概括的能力。为后面用方程解决问题埋下伏笔。
在(四)“运用模型,实践方程作用”环节中,我设计了两个问题让学生独立完成,实践方程作用。
学生可能会直接列方程而没有设出未知数,也可能在间接设未知数时不知道选择最简便的方法。所以本环节一方面培养学生运用知识解决问题的能力,另一方面规范解题格式,巩固所学内容。同时使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力,再次感受数学源于生活。
在学习感悟的环节中,主要让学生围绕两个问题谈谈自己在这节课中的收获。目的是明确知识,培养抽象概括能力,提高学生的思维水平。
最后以数学大师笛卡尔的名言小结,“夸大”方程的作用,在学生心目中产生名人效应,对今后方程的学习与应用更加充满兴趣,同时提高了学生的数学文化素养。
四、本节课的教法特点以及预期效果分析
本节课主要采用师生共同探究学习法进行教学,由教师引导,学生自主探索、观察、归纳。在教学设计中,以生活中的实际问题为例来创设情境,引导学生关注身边的事。在课堂上努力营造一种学生自主探究的氛围,引导学生去分析思考和归纳总结,进而达到对知识的“发现”和接受的目的。有意识地给学生创造一个欣赏数学、探索数学的平台,渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想。利用多媒体和动感天平演示来辅助教学,充分调动学生的积极性。
在教学过程中我主要在以下几个方面做了新的尝试:
1、体现学生的主体意识。本设计中,教师始终把学生放在主体的地位,让学生通过对列算式与列方程这两种主要方法进行比较,分别归纳出它们的特点,让学生感受到从算术方法到代数方法是数学的进步,让学生通过合作与交流,得出同一个问题的不同解答方法,让学生对本节课的学习内容、方法、注意点等进行归纳。
2、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系、设未知数及作业的布置等环节中,让学生展示不同层次的思维活动,经历合作探究新知的过程。
3、渗透方程建模的思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
2、初中数学教师观摩课《从问题到方程》一等奖说课稿
《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。
教师作为数学教学主导,在设计数学活动时要遵循以下原则:
一、根据学生的年龄特征和认知特点组织教学。
二、重视培养学生的应用意识和实践能力。
1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。
2、培养学生应用数学的意识和提高解决问题的能力。
三、重视引导学生自主探索,培养学生的创新精神。
1、引导学生动手实践、自主探索和合作交流。
2、鼓励学生解决问题策略的多样化。
四、教师对教学目标,难点,重点把握要恰当、具体。
数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的`结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意
识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。
活动3:讲练结合,分析增根
活动5:布置作业,深化巩固(略)
3、初中数学教师观摩课《从问题到方程》一等奖说课稿
各位老师:
大家好!
我说课的内容是苏教版五年级下册第一单元《方程》第一课时的内容。下面从教材分析、学情分析、教学目标分析、教学重难点分析、教法与学法分析、教学设计等几个方面进行说课。
一、教材分析
《方程》是在学生已经学过用字母表示数的基础上展开的,为下面等式的性质和解方程的教学作铺垫,有着承前启后的重要作用。同时,方程作为一种重要的数学思想方法,对丰富学生解决问题的策略,提高解决问题的能力,发展数学素养有着非常重要的意义。
二、学情分析
1.小学生的心理特点
小学生年幼好动,有强烈的好奇心,注意力分散,因此,我采用形象生动、形式多样的教学方法,激发学生的学习兴趣,培养学生的能力。
2.学生的知识结构
学生已经完成了整数、小数的认识及其四则运算的学习,积累了较多的数量关系的知识,是在学会用字母表示数的基础上学习方程知识的。
三、教学目标分析
根据新课程标准的要求、教材编写意图、五年级学生的认知规律和已有的知识结构,制订如下教学目标:
知识目标:理解方程的含义,初步体会等式与方程的关系。
能力目标:通过将现实问题抽象成等式与方程的过程,培养学生“从具体到抽象”“从特殊到一般”的归纳概括能力。
情感目标:创设问题情境,激发学生观察、分析、探求的学习激情,强化学生的参与意识及主体作用。
四、重、难点分析
方程作为一种重要的数学思想方法,是学生进一步学习数学和其他学科的重要基础。因此,本节课的重点确定为:理解方程的含义。
小学生的认知水平还处在感性认识的阶段,要透过现象看本质,并上升到理论的高度还存在着很大困难,所以将理解等式与方程的关系确定为本节课的教学难点。
五、教法与学法分析
1.学法
叶圣陶先生说过:“教是为了不教。”我们不仅要教给学生知识,更要教会学生如何去学。因此,在学法中,让学生通过“感知交流→观察比较→得出概念→分析概念”的探究过程去发现新知,从而达到发展思维,提高能力的目的。
2.教法
建构主义学习理论认为,学习是学生自己进行知识建构的过程。因此,根据教学目标的要求和学生实际,我采用以小组合作观察探究为主,多媒体为辅的教学方式来培养学生自主学习的能力、观察探究的能力以及分析解决问题的能力。
六、教学过程
建构主义理论认为,学生在与学习环境相互作用的过程中,使自身的认知结构在“平衡→不平衡→新的平衡”的循环中得到不断的丰富、提高和发展。在该理论的指导下,我将按创设情境→观察探究→知识运用三个环节来组织教学。
分页标题#e#
1.创设情境——引入新知
我首先提供了天平平衡的情境图,通过“用等式表示天平两边物体的质量关系”的活动,引出“50+50=100”的等式,激活学生已经积累的关于等式的感性经验。这样,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2.观察探究——形成概念
这部分是教学的重点,我采用以下几个步骤突出这个重点。
【感知交流】我提供了四幅天平图,让学生充分感知和交流,用式子表示天平两边物体的质量关系。通过展示图片,调动学生的学习积极性,同时培养学生自主学习的能力。
【观察比较】接着,我提出这些式子中“哪些是等式”的问题,引导学生通过进一步的观察和比较,认识到列出的式子中,两个式子是等式,还有两个式子不是等式。而这里的等式与前面的等式不同,它们都含有未知数。通过实验探究活动培养学生的观察能力和语言表达能力,充分体现自主、合作、探究的新课程理念。
【得出概念】通过引导学生主动发现方程的特点,并用自己的语言充分地表达,从而得出方程的概念,即“像x+15=150,2x=200这样含有未知数的等式是方程”。培养学生从具体到抽象,从特殊到一般的归纳概括能力。
【分析概念】这部分是教学的`难点,为突破这个难点,在得到方程概念的基础上,我及时组织学生讨论“等式和方程有什么关系”,帮助学生感受等式与方程的联系与区别,体会方程就是一种特殊的等式。这样做有助于培养学生的抽象思维能力和归纳概括能力。
3.知识运用
“试一试”通过列方程表示现实情境中数量间的相等关系,引导学生进一步理解方程的含义,体会方程的思想,并为进一步学习列方程解决实际问题作一些准备。
“练一练”安排了三道题。第一题采用学生抢答的方式,通过判断题中的式子哪些是等式,哪些是方程,引导学生体会等式与方程之间的逻辑联系,加深对方程含义的理解。第二题通过让学生写出一些方程在小组里交流,引导学生将已有的对方程的认识用外显的形式表达出来,促进学生自主地建构方程的模型,内化方程的概念。第三题采用全班交流的方式,根据具体情境中的数量关系列方程,既有利于学生进一步熟悉列方程的思维特点,又有利于学生对方程含义的理解。
4.引导小结
本课的小结采用学生小结的模式,这是让学生学会自己梳理已经学习过的知识,然后我再对学生的小结进行总结。
5.布置作业
为了使所有学生巩固所学知识,我布置了必做题:要求学生每个人写一篇数学日记,即通过这节课的学习,有哪些收获,还有哪些疑问。同时又为学有余力的学生留有自由发展的空间,我布置了探究题。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位老师批评指正。谢谢大家!
4、初中数学试讲教案一等奖《一元二次方程复习》
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。下面,小编为大家分享初中数学试讲教案《一元二次方程复习》,希望对大家有所帮助!
试讲人:XXX
知识点:二元一次方程的概念及一般形式,二次项系数、一次项系数、常数项、判别式、一元二次方程解法
重点、难点:二元一次方程四种解法,直接开平方、配方法、公式法、因式分解法
教学形式:例题演示,加深印象!学完即用,巩固记忆!你问我答,有来有往!
1、自我介绍:30s
大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的'方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)
需要变换的:2x +4x-8=0
步骤:将二次项系数化为1,左右同除2得:x +2x-4=0
将常数项移到等号右边得:x +2x=4
左右同时加上一次项系数一半的平方得:x +2x+1=4+1
所以有方程为:(x+1)=5 形似 x=n
然后用直接开平方解得x+1=±5 x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!
题目:1/2x-5x-1=0 答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b ±2-4ac )/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:
3x -2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
化简得:x1=(1-)/3 x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab 可以化成ab (1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)*(nx+b)=0 这样就可以解出x=-a/m x=-b/n
我们一起做一个例题巩固一下:4x +5x+1=0
则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
5、九年级数学公开课《一元二次方程》教学设计一等奖
作为一名默默奉献的教育工作者,就难以避免地要准备教学设计,借助教学设计可以更好地组织教学活动。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编整理的九年级数学公开课《一元二次方程》教学设计,欢迎大家分享。
教材分析
一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的'教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。为接下来的学习起到很好的铺垫作用
学情分析
九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。
教学目标
一、知识与技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;
2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;
3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。
二、过程与方法
1. 在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;
2. 借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学
三、情感态度与价值观
1. 通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;
2. 通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。
教学重点和难点
重点:一元二次方程的概念及一般形式。
难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。
6、幼儿园大班观摩课数学《对称卡》形状特性
活动目标:
1、观察发现形状及颜色的对称关系。
2、理解对称的含义并且会进行找对称的操作。
3、正确判断对称图形,完成练习。
活动准备:
1.具有对称特点的物品
2.做题的对称卡挂图及各类各色图形3.各种图形用一纸袋子装好,幼儿人手一份活动过程:
一、感知对称
1.故事引入:春天来了,花园里开满了五颜六色的花,美丽的蝴蝶在花丛中跳起了欢快的舞蹈。这时,飘来一片乌云,蝴蝶都拍拍翅膀准备回家。忽然,蝴蝶叫了起来:"我丢了一只翅膀,飞不起来了!"(把纸制的蝴蝶的半只翅膀布置在背景图上)雨越下越大,谁愿意帮助他找到另一只翅膀呢?
2.请个别幼儿为背景图上的蝴蝶的翅膀配对。
3.展示配好对的翅膀,并说明配对的理由(从颜色、形状、大小一样)。 (引导幼儿进行观察,比较,小结出这些图形的特点:对折左右两边都相同,把它叠在一起,会重合)教师小结:像这种对折后左右两边能完全重合的图形, 如蝴蝶,都有一条中心线,它们左右两边的大小、颜色、形状完全相同,我们把它们叫做"对称"。
二、找对称
1.师出示某图形的一半,请幼儿找到它的另一半来拼一拼。
2.师:其实人的.身体很多地方也是对称的?大家找找看。那么动作可以对称吗?(请小朋友指出并做动作。)
3.我们还见过哪些东西是对称的呢?(门窗、蜜蜂、蜻蜓、蝴蝶、书本、衣服、心形、梯形、手掌、脸、飞机翅膀、车轮等)三、练习判断书中的几组图(出示自制挂图),看看哪组图是对称图形,是就在下面的方框中打上"√"四、游戏纸袋中的各类图形倒出来,分别找找有哪些图形是对称的?在桌子上拼一拼,师巡视指导。
五、布置作业完成书后的练习
7、小学数学第七册《乘法分配律》观摩课的优秀教案一等奖
教材分析
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的基础,本节课注重引导,指点,会收到很好的`效果。
知识与技能:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感态度价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法的分配律。
教学难点:乘法的分配律的推理及运用。
8、《一元二次方程的分式方程》数学教学设计一等奖
一、教学目标
1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2.通过本节课的教学,向学生渗透“转化”的数学思想方法;
3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。
二、重点·难点·疑点及解决办法
1.教学重点:的解法.
2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.
3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.
4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。
三、教学步骤
(一)教学过程
1.复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
(3)解方程,并由此方程说明解方程过程当中产生增根的原因。
通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
2.例题讲解
例1 解方程。
分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。
解:两边都乘以,得
去括号,得
整理,得
解这个方程,得
检验:把代入,所以是原方程的根。
∴ 原方程的根是。
虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学
生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另
外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解
分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.
例2 解方程
分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是
正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所
以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.
解:方程两边都乘以,约去分母,得
整理后,得
解这个方程,得
检验:把代入,它不等于0,所以是原方程的根,把
代入它等于0,所以是增根.
∴ 原方程的根是
师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.
例3 解方程。
分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出y后,再求原方程的未知数的值.
解:设,那么,于是原方程变形为
两边都乘以y,得
解得
。
当时,,去分母,得
解得;
当时,,去分母整理,得
,
检验:把分别代入原方程的分母,各分母均不等于0。
∴ 原方程的根是
,。
此题在解题过程当中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验。
巩固练习:教材P49中1、2引导学笔答。
(二)总结、扩展
对于小结,教师应引导学生做出。
本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行。
本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法。
此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握。
四、布置作业
1.教材P50中A1、2、3。
2.教材P51中B1、2
五、板书设计
探究活动1
解方程:
分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次
设,则原方程变为
∴
∴或无解
∴
经检验:是原方程的解
探究活动2
有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.
解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4· )占原来农药 ,故
整理,
(舍去)
答:桶的容积为40升.
9、数学《实际问题与方程》教学设计一等奖
教学内容:人教版五年级上册第五单元第七课实际问题与方程(二)
教学目标:
知识与技能:
1、结合具体的情景,使学生掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。
2、学生通过学习两积之和的数量关系来理解两积之差、两商之和、两商之差的'数量关系,培养举一反三的能力。
过程与方法:
培养学生的比较、分析能力和类比学习的能力。
情感态度与价值观:
学生在利用迁移、类推的方法,在解决问题的过程中,体会数学与现实生活的密切联系。
教学重难点:
分析数量关系,列出含有小括号的方程并解答。
教学准备:
教具准备:多媒体
学具准备:答题纸
教学过程:
一、联系生活、导入新课:
师:秋天是收获的季节,天气慢慢变凉,而且比较干燥,同学可以多吃些水果缓解干燥,你喜欢吃什么水果呢?(引入准备题)
生自由发言(三人左右)
师结合东营气候的实际情况作出评价。
二、合作交流、探究新知:
(一)1、师:我们看看妈妈买了些什么水果?仔细观察,你能得到那些信息?
(出示 P77例3 图片)
2、观察图片你能提出什么样的问题?
(生:苹果每千克多少钱?)
师:你能根据其中的条件找出数量间相等的关系吗?组内互相议一议,派代表发言。
3、生独立列方程,说说为什么这样列,并求解。(一生上台演板)
师:请你把思考方法给大家讲讲,其他同学可以互相补充、纠正。
方法一:
方法二: 还可以这样列方程:
师:请同学认真观察这个方程怎么解?小组内先讨论,再派代表发言。
师:把(2.8+X)看作一个整体,两边同时除以2,先求出2.8+X是多少,再算X等于多少。
4、 同学把这个方程解完,学生演板后,教师组织讲评。
5、同桌互相说一说第二种等量关系和解这个方程的方法。
说一说列方程解应用题的一般步骤
6、练习:解方程
(二)教学例4
1.引入例题。出示例4的条件:
地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。
教师:现在又能提出哪些数学问题?
引出例题。
2.比较例题与求地球表面积的复习题,有什么区别。
引导学生回答:数量关系相同,条件与问题交换了位置。
请学生说出数量关系,教师板书:
陆地面积+海洋面积=地球的表面积5.1亿平方千米
↓
陆地面积×2.4
3.讨论:有两个未知数,怎么办?
①怎样设未知数?
②怎样列方程?
学生分组讨论,教师巡视,酌情参与讨论。
4.交流各种解法。
引导学生从便于思考、便于解方程两方面进行比较。
5.重点讨论下列解法。
解:设陆地面积为x亿平方千米。(设海洋面积为x可以吗?哪个更方便?)
那么海洋面积为2.4x亿平方千米。(这是用了哪个条件?)
x+2.4x=5.1 (这是用了哪个条件?)
(1+2.4)x=5.1 (这是用了什么运算定律?)
让学生自己把方程解完,得x=1.5。
提问:另一个未知数怎样求?根据是什么?
5.1-1.5=3.6(利用和的关系)
2.4x=1.5×2.4=3.6(利用倍数关系)
6.引导学生进行检验。
提问:除了代入方程检验之外,还可以怎样验算?
验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米:
1.5+3.6=5.1
验算海洋面积与陆地面积的倍数关系是否等于2.4:
3.6÷1.5=2.4
(三)用同样的方法教学例5
三、巩固应用
1.你会解下列方程吗?
5+ 1.5×5 = 17.5
(-3 ) ÷2 = 8.5
2. 两辆汽车同时从相距237千米的两个车站相向开出,经过3小时辆车相遇。一辆汽车每小时行38千米,另一辆汽车每小时行多少千米?
3. 你能根据给出的方程编应用题吗?
(26+) ×3=150
四、课堂总结
通过本节课的学习你有什么收获?
板书设计:
10、数学教案一等奖《一元一次方程-利用等式的性质解方程》
一、目的要求 使学生会用移项解方程。
二、内容分析
从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。
x=a的形式有如下特点:
(1)没有分母;
(2)没有括号;
(3)未知项在方程的一边,已知项在方程的另一边;
(4)没有同类项;
(5)未知数的系数是1。
在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。
根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。
解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。
用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。
如解方程 7x-2=6x-4
时,用移项可直接得到 7x-6x=4+2。
而用等式性质1,一般要用两次:
(1)两边都减去6x; (2)两边都加上2。
因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。
三、教学过程()
复习提问:
(1)叙述等式的性质。
(2)什么叫做方程的解?什么叫做解方程?
新课讲解:
1.利用等式性质1可以解一些方程。例如,方程 x-7=5
的两边都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的两边都减去6x,就可以得到 7x-6x=-4,
x=-4。
然后问学生如何用等式性质1解下列方程 3x-2=2x+1。
2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于
也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。
3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.
利用移项解前面提到的方程 3x-2=2x+l
解:移项,得 3x-2x=1+2。①
合并,得 x=3。
检验:把x-3分别代入原方程的左边和右边,得
左边=3×3-2=7, 右边=2×3+1=7, 左边=右边,
所以x=3是原方程的.解。
在上面解的过程中,由原方程①的移项是指:
(l)方程左边的-2,改变符号后,移到方程的右边;
(2)方程右边的2x,改变符号后,移到方程的左边。
在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。
课堂练习:教科书第73页 练习
课堂小结:
1.解方程需要把方程中的项从一边移到另一边,移项要变号。
2.检验要把数分别代入原方程的左边和右边。
四、课外作业
习题2.1 P73 复习巩固