说课稿

初中数学等腰三角形性质一等奖说课稿

2023-08-29 13:11:31

  初中数学等腰三角形性质一等奖说课稿

初中数学等腰三角形性质一等奖说课稿

1、初中数学等腰三角形性质一等奖说课稿

  作为一名教职工,通常会被要求编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。那么优秀的说课稿是什么样的呢?以下是小编收集整理的初中数学等腰三角形性质说课稿,仅供参考,大家一起来看看吧。

  一、教材分析

  1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

  3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

  知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。ツ芰δ勘辏耗芙岷暇咛迩榫撤⑾植⑻岢鑫侍猓逐步具有观察、猜想、推理、归纳和合作学习能力。

  情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

  4、教学重、难点:

  重点:等腰三角形性质的探索及其应用。

  难点:等腰三角形性质的探索及证明。

  5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

  二、学情分析

  刚进入初二的'学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

  三、教法分析

  《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

  四、学法建构

  《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

  1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

  2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

  五、教学模式

  本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

  《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

  提高学生的自主意识和合作精神。

  六、教学程序和设想

  《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。(一)创设情境,观察联想。1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)2、两幅图中都有哪种几何图形?(等腰三角形)

  从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。(二)动手操作,揭示课题。3、什么是等腰三角形?等边三角形?它们有何关系?4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

  5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。)

  6、小组代表用语言表达得出的结论。

  7、多媒体演示折叠过程,再现归纳得出的结论。

  8、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。

  波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

  (三)独立思考,探究新知。

  9、对于观察得出的结论是否能进行论证,请学生动手试一试。

  放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

  (四)合作探究,交流创新。

  10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

  组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

  (五)引导评价,形成规律。

  11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

  12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

  学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

  运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

  13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

  (六)实践应用,巩固提高。

  例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

  把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。ゴ锉炅废(抢答)①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

  ②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠EDF的度数ネü能力训练题,提高学生分析问题和解决问题的实践能力。

  ③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

  (七)反思归纳,形成结构。

  1、引导学生对学习过程进行小结:

  ①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

  ②所学知识能解决哪些实际问题?

  ③本节课所运用的学习方法对你今后学习有什么启示?

  2、布置作业:(分层布置)

  这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

2、初中数学等腰三角形性质一等奖说课稿

  大家好,我说课的课题是八年级上册第13章第三节第1课时《等腰三角形的性质》。我主要从以下五个方面进行说课:

  一说教材

  《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

  二说教学目标

  根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

  1掌握等腰三角形的性质

  2知道等腰三角形的性质的推理过程

  3会灵活运用等腰三角形的性质解决相关的数学问题

  三 说教学重、难点

  结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

  由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

  四 说教法和学法

  本节课我采用的教法是启发式教学法、动手操作法。

  学生的学法是:自主探究法、合作讨论法。

  五说教学过程

  本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

  1 复习导入

  通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的`概念。

  2探究新知

  在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

  3理解与运用

  为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

  4强化巩固

  在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

  5小结

  设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

  本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。

3、初中数学等腰三角形性质一等奖说课稿

  各位领导、老师们:

  大家好!

  今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。

  一、教材分析

  1、教材的地位与作用:

  本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

  2、教学目标:

  知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

  过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

  解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

  情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

  (根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

  3、教学重点与难点:

  重点:等腰三角形的性质的探索和应用。

  难点:等腰三角形性质的推理证明。

  二、教法设计:

  教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

  三、学法设计:

  在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

  四、教学过程:

  根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:

  1、创设情景:

  首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。

  2、动手操作,大胆猜想:

  ①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

  ③分组讨论。(看哪一组气氛最活跃,结论又对又多.)

  然后小组代表发言,交流讨论结果。

  ④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

  (教师引导学生进行总结归纳得出性质1,2)

  性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

  性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

  (设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的.几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)

  3、证明猜想,形成定理:

  你能证明等腰三角形的性质吗?

  对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:

  (1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。

  (2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)

  (3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。

  问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;

  问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。

  问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:

  (1)作顶角∠BAC的平分线,

  (2)作底边BC的中线,

  (3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。

  (设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)

  (4)你能用符号语言表示性质1和性质2吗?

  (设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——

  4、性质的应用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______

  变式练习:

  1、在等腰中,∠A=50°,则 ∠B=___,∠C=___

  2、在等腰中,∠A=100°,则∠B=___,∠C=___

  设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如

  例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______

  变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______

  (设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。

  例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

  (例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)

  例四:

  在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)

  5、巩固提高

  (1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。

  (2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。

  (3)课本本章数学活动三“等腰三角形中相等的线段”

  设计意图:

  (1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。

  (2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。

  6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。

  7、布置作业:

  P55练习1、2、3题

  P56习题1、4、6,(选做7,8题)

4、初中数学 《等腰三角形》教学设计一等奖

  目标:

  知识目标: 等腰三角形的相关概念,两个定理的理解及应用。

  技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的`结论。

  情感目标: 体会数学的对称美,体验团队精神,培养合作精神。

  教学中的重点、难点:

  重点:

  1、等腰三角形对称的概念。

  2、“等边对等角”的理解和使用。

  3、“三线合一”的理解和使用。

  难点:

  1、等腰三角形三线合一的具体应用。

  2、等腰三角形图形组合的观察,总结和分析。

  主要教学手段及相关准备:

  教学手段:

  1、使用导学法、讨论法。

  2、运用合作学习的方式,分组学习和讨论。

  3、运用多媒体辅助教学。

  4、调动学生动手操作,帮助理解。

  准备工作:

  1、多媒体课件片断,辅助难点突破。

  2、学生课前分小组预习,上课时按小组落座。

  3、学生自带剪刀,圆规,直尺等工具。

  4、每人得到一张印有“长度为a的线段”的纸片。

  教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:

  1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。

  2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。

  3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。

5、《等腰三角形性质》教案一等奖设计

  一、教材分析

  1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。 2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

  3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

  知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。ツ芰δ勘辏耗芙岷暇咛迩榫撤⑾植⑻岢鑫侍猓逐步具有观察、猜想、推理、归纳和合作学习能力。

  情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

  4、教学重、难点:

  重点:等腰三角形性质的探索及其应用。

  难点:等腰三角形性质的探索及证明。

  5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

  二、学情分析

  刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

  三、教法分析

  《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

  四、学法建构

  《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

  1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

  2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

  五、教学模式

  本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

  《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

  提高学生的自主意识和合作精神。

  六、教学程序和设想

  《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。 (一)创设情境,观察联想。 1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形) 2、两幅图中都有哪种几何图形?(等腰三角形)

  从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。 (二)动手操作,揭示课题。 3、什么是等腰三角形?等边三角形?它们有何关系? 4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

  5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。 )

  6、小组代表用语言表达得出的`结论。

  7、多媒体演示折叠过程,再现归纳得出的结论。

  8、揭示、板书课题:等腰三角形性质。ト醚生温习、重现已学相关知识,为学习新知识做铺垫。

  波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

  (三)独立思考,探究新知。

  9、对于观察得出的结论是否能进行论证,请学生动手试一试。

  放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

  (四)合作探究,交流创新。

  10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

  组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

  (五)引导评价,形成规律。

  11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作 AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

  12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?

  学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

  运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

  13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

  (六)实践应用,巩固提高。

  例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

  把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。锉炅废(抢答) ①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

  ②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠ EDF的度数ネü能力训练题,提高学生分析问题和解决问题的实践能力。

  ③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。ソ一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

  (七)反思归纳,形成结构。

  1、引导学生对学习过程进行小结:

  ①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?

  ②所学知识能解决哪些实际问题?

  ③本节课所运用的学习方法对你今后学习有什么启示?

  2、布置作业:(分层布置)

  这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

6、初中数学《认识三角形》教学设计一等奖

   认识三角形

  教学目的

  掌握三角形的角平分线、中线、高线的概念,并会画出任意三角形的角平分线、中线、高线,特别注意钝角三角形高的画法.让学生从实践中得到三角形的三条中线、角平分线、高分别交于一点,直角三角形三条高的交点就是直角顶点,钝角三角形有两条高位于三角形的外部.

  重点、难点

  1.重点:三角形角平分线、中线、高的概念及其画法. 2.难点:钝角三角形高的画法.

  教学过程

  一、复习提问

  1.什么叫角平分线?如何画一个角的平分线?

  2.已知A、B分别是直线l上和直线l外一点,分别过点A、点B画直线l的垂线.

  l A

  3.三角形按角分类可分为哪几种?

  二、新授

  今天我们要学习三角形中的三种重要线段中线、角平分线和高.

  1.三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.如图,点D是BC边的中点,即AD是△ABC的中线.

  问:三角形有几条中线?若已知AD是三角形的中线,你可得到什么结论?

  2.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.

  如图,2,那么CE是△ABC的角平分线.

  问:三角形有几条角平分线?三角形的角平分线和角平分线有什么不同?

  3.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫三角形的高.

  如图BFAC,垂足为F,则BF是△ABC的高,三角形有3条高.

  例1.如图△ABC,边BC上的高画得对吗?为什么?

  [分析]根据三角形高的概念,BC边上的高应是BC边所对的顶点 A向BC作垂线,顶点A与垂足间的线段,所以(1),(2),(4)都错了,只有(3)是对的.

  4.做一做:让学生拿出昨天做的三个锐角三角形. (1)分别画出中线、角平分线、高.

  (2)你能用折纸的`办法得到这些线段吗?试一试.

  (只要求折出一条中线、一条高,一条角平分线)

  (3)把锐角三角形换成直角三角形、钝角三角形再试一试.

  将你的结果与同伴进行交流.

  5.议一议:

  (1)一个三角形中三条中线(高、角平分线)之间的位置关系怎样?

  [三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点]

  (2)一个三角形的三条中线(角平分线)的交点与三角形有怎样的位置关系?

  [三条中线(角平分线)相交于一点,这一点在三角形内部]

  (3)直角三角形的三条高,它们有怎样的位置关系?钝角三角形呢?

  [直角三角形有一条高在三角形内部,另外两条就是直角三角形的两条直角边,三条高的交点就是直角三角形的直角顶点,钝角三角形有一条高在形内,两条高在形外,三条高所在的直线的交点在形外.]

  (4)你能折出钝角三角形的三条高吗?

  三、巩固练习 教科书第62页练习.

  第l题 也可以让学生剪下一个等腰三角形,用折纸的方法验证底边上的高、中线、角平分线互相重合.

  四、小结:

  三角形的三种重要线段中线、高、角平分线的概念. 2.三角形的中线、高、角平分线的画法. 3.三角形的三条中线(高、角平分线)之间的位置关系以及它们与三角形间的位置关系.

  五、作业 补充作业

相关文章

推荐文章